Abstract:
A radio frequency (“RF”) harmonic filter circuit as disclosed herein is fabricated using integrated passive device (“IPD”) technology. The RF harmonic filter circuit is configured to provide second, third, and fourth harmonic rejection while providing good input and output impedance matching. The RF harmonic filter circuit employs only one IPD loop inductance (preferably used for a second harmonic resonance circuit), which results in a significant die/package size reduction. The RF harmonic filter circuit also employs a combined circuit that performs input and/or output impedance matching and third harmonic rejection.
Abstract:
Methods and apparatus are provided to enable a transceiver (200) or transmitter including a single PA line-up (210) to transmit signals having frequencies in two or more different frequency bands, and/or having two or more different modulation types, and/or having two or more different RF power levels. The single PA line-up includes at least one variable matching circuit (216) and a variable harmonic filter (240) to tune match and tune filter communication signals prior to transmission. The variable matching circuit and the variable harmonic filter each include at least one variable capacitive element (2160 and 2400) that switches ON/OFF depending on whether a low frequency signal or a high frequency signal is being transmitted. Each variable capacitive element includes separate direct current and radio frequency terminals to enable the single PA line-up to change signal modulation and/or RF power levels in addition to frequencies.
Abstract:
A radio frequency (“RF”) harmonic filter circuit as disclosed herein is fabricated using integrated passive device (“IPD”) technology. The RF harmonic filter circuit is configured to provide second, third, and fourth harmonic rejection while providing good input and output impedance matching. The RF harmonic filter circuit employs only one IPD loop inductance (preferably used for a second harmonic resonance circuit), which results in a significant die/package size reduction. The RF harmonic filter circuit also employs a combined circuit that performs input and/or output impedance matching and third harmonic rejection.
Abstract:
A method for dry etching a composite metal film, consisting of an aluminum overlay film, a titanium--tungsten film, and a titanium underlay film, is described. The process uses an organic photoresist as a mask and features improved etch selectivity and non-tapered sidewalls. The addition of CF.sub.4, to the etching chemistry used to pattern titanium--tungsten films, increases the selectivity between the photoresist and titanium--tungsten, allowing for thinner resists to be used, and thus finer resolution to be achieved. The introduction of N2 to the etching chemistry results in a N.sub.2 containing polymer to be formed during the etching procedure, on the sidewalls of the etched structure. The polymer prevents the isotropic component of the reactive ion etching process to attack the metal structure, thus allowing for non-tapered structures to be obtained.