Abstract:
Systems and techniques are disclosed relating to wireless communications. These systems and techniques involve wireless communications wherein a device may be configured to recover an information signal from a carrier using a reference signal, detect a frequency error in the information signal; and periodically tune the reference signal to reduce the frequency error. To prevent GPS performance degradation during LO tuning, a tuning indicator signal may be generated and provided to the GPS receiver to disable GPS operation.
Abstract:
Systems and techniques are disclosed relating to wireless communications. These systems and techniques involve wireless communications wherein a device may be configured to recover an information signal from a carrier using a reference signal, detect a frequency error in the information signal; and periodically tune the reference signal to reduce the frequency error. To prevent GPS performance degradation during LO tuning, a tuning indicator signal may be generated and provided to the GPS receiver to disable GPS operation.
Abstract:
Techniques to combine soft-decision power control symbols received for multiple active base stations. In one method, a received signal is initially processed to derive soft-decision (multi-bit valued) symbols for power control commands transmitted from a number of base stations. Each soft-decision symbol for each base station is then scaled based on a scaling factor associated with the base station and which is related to the received signal quality for the power control symbols for the base station. The scaling allows power control symbols for more reliably received base stations to be given greater weights. The scaled soft-decision symbols for each power control period are then combined to provide a decision metric for the period. Each decision metric is then compared against a particular threshold, and a power control decision is derived for each decision metric based on the result of the comparison.
Abstract:
Techniques for improved handoff searching in asynchronous systems, such as W-CDMA, are disclosed. In one aspect, a two-step search procedure is used when a list of neighbor codes is known. In the first step, a received signal is correlated with a slot timing code to locate on or more pilots and the slot boundaries associated therewith. In the second step, the received signal is correlated with each of the list of codes at the slot boundaries identified with pilots in the first step to identify the pilot code and the frame timing associated with each pilot. Various other aspects of the invention are also presented. These aspects have the benefit of decreasing search time, which translates to increased acquisition speed, higher quality signal transmission, increased data throughput, decreased power, and improved overall system capacity.
Abstract:
Schemes to time-align transmissions from multiple base stations to a terminal. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the terminal within a particular time window. In one scheme, a time difference between two base stations is partitioned into a frame-level time difference and a chip-level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for each candidate base station relative to a reference base station. Additionally, the terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal sets the frame-level part to a predetermined value (e.g., zero).