Abstract:
The apparatus may be a base station. The apparatus sets a first numerology for at least one synchronization signal of one or more synchronization signals to be different from a second numerology for at least one data signal of one or more data signals. The apparatus transmits the one or more synchronization signals to a user equipment (UE) based on the first numerology. The apparatus transmits the one or more data signals to the UE based on the second numerology.
Abstract:
The apparatus may be a base station. The apparatus processes a first group of synchronization signals. The apparatus processes a second group of synchronization signals. The apparatus performs a first transmission by transmitting the processed first group of the synchronization signals in a first synchronization subframe. The apparatus performs a second transmission by transmitting the processed second group of the synchronization signals in a second synchronization subframe.
Abstract:
A UE may receive, from a base station, through a set of beams a set of BRSs. The UE may measure a signal quality of each BRS of the set of BRSs, and each measured signal quality may correspond to a beam of the set of beams. In an aspect, the UE may maintain a set of candidate beam indexes corresponding to a set of best measured signal qualities of the set of BRSs. In an aspect, the UE may transmit, to the base station, information indicating at least one measured signal quality and at least one beam index from the set of maintained candidate beam indexes, and the at least one beam index may correspond to the at least one measured signal quality.
Abstract:
A UE may receive a beam modification command that indicates a set of transmit beam indexes corresponding to a set of transmit beams of a base station, and each transmit beam index of the set of transmit beam indexes may indicate at least a transmit direction for transmitting a transmit beam by the base station. The UE may determine a set of receive beam indexes corresponding to receive beams of the UE based on the set of transmit beam indexes, and each receive beam index of the set of receive beam indexes may indicate at least a receive direction for receiving a receive beam by the UE. The UE may receive, from the base station, a signal through at least one receive beam corresponding to at least one receive beam index included in the set of receive beam indexes.
Abstract:
Methods, systems, and devices for wireless communication are described. The methods, systems, and devices provide for identifying tone spacing for transmission or reception of signals. The identified tone spacing may vary depending on the transmission or reception spectrum band or signal type. Using the identified tone spacing, a number of repetitions or a number of symbols for transmission or receiver algorithm of a signal may be determined.
Abstract:
Disclosed in this application are techniques to enabling and employing bandwidth agnostic tone mapping. Certain aspects of the present disclosure relate to methods and apparatus for mapping coded bits of a broadcast channel to tones of a symbol. Certain aspects of the present disclosure relate to methods and apparatus for mapping bits of a beamformed reference signal (BRS) signal to tones of a symbol. Other aspects, embodiments, and features are also claimed and described.
Abstract:
When beamforming (e.g., via a millimeter wave system (mmW)) is used for wireless communication, a base station may transmit beams that are directed to certain directions. Due to the directional nature of the beams in the mmW system, an approach to determine a beam that provides a desirable gain is studied. The apparatus may be a user equipment (UE). The apparatus receives, from a base station, a plurality of signals through a plurality of beams of the base station, each of the plurality of beams corresponding to a respective antenna port of a plurality of antenna ports of the base station. The apparatus receives from the base station a number of beams whose information should be fed back to the base station. The apparatus performs channel estimation for each beam of the plurality of beams from the plurality of antenna ports based on the plurality of signals.
Abstract:
DM-RS symbols may be inserted in the beginning of a subframe, or in two parts of the subframe. In one aspect, a method, a computer-readable medium, and an apparatus for dynamically conveying DM-RS information are provided. The apparatus may be a base station. The apparatus may determine the number of DM-RS symbols and/or the locations within a subframe for transmission of the DM-RS symbols. The apparatus may transmit the number of the DM-RS symbols and/or the locations within the subframe for transmission of the DM-RS symbols to a UE. In another aspect, a UE may receive the number of DM-RS symbols and/or the locations within a subframe for transmission of the DM-RS symbols from a base station. The UE may decode the DM-RS symbols from the subframe based on the number of the DM-RS symbols and/or the locations within a subframe for transmission of the DM-RS symbols.
Abstract:
One apparatus may be configured to detect a set of beams from a base station. The apparatus may be further configured to select a beam of the set of beams. The apparatus may be further configured to determine at least one resource based on the selected beam. The apparatus may be further configured to transmit, on the at least one determined resource, a beam adjustment request to the base station. The request may indicate an index associated with the selected beam. Another apparatus may be configured to transmit a first set of beams. The other apparatus may be further configured to receive a beam adjustment request on at least one resource. The other apparatus may be further configured to determine a beam index of a beam in the first set of beams based on the request and the at least one resource.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for phase noise estimation in data symbols for millimeter wave (mmW). A method for wireless communications by a transmitting device is provided. The method generally includes identifying a phase noise metric associated with at least one receiving device; determining a phase noise pilot configuration based, at least in part, on the identified phase noise metric; and providing an indication of the phase noise pilot configuration to the at least one receiving device. A receiving device can receive the phase noise pilots in accordance with the configuration and determine phase noise for a data symbol based on the received phase noise pilots.