Abstract:
Integrated gaseous fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The gaseous fuel CPOX reformer also can include one or more igniters, and a source of gaseous reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the gaseous fuel CPOX reformer.
Abstract:
A chemical reactor (e.g. reformer reactor) system includes a manifold (126) for management of a flow of gaseous reaction medium thereto. Manifold (126) includes manifold housing (128) defining manifold chamber (129) and having at least one additional component selected from: a gas distributor (127); a heater; and a cavity having a seal within or adjacent to it.
Abstract:
A liquid fuel catalytic partial oxidation (CPOX) reformer can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. At least the exterior surface of the CPOX reaction zone can include a hydrogen barrier. The liquid fuel CPOX reformer can include a vaporizer, one or more igniters, and a source of liquid reformable fuel.
Abstract:
Embodiments of a nozzle assembly and a closable valve assembly for use in a fluid bed reactor system are disclosed. The nozzle assembly includes a first member that extends upwardly through a bottom wall of a fluid bed reaction chamber, and a second member. The first and second members are detachably fitted together via threads on each member. The second member can be removed and/or replaced, thereby facilitating fluid bed reactor maintenance. The closable valve assembly is connected to a nozzle, and includes a valve body and a gate pivotally connected to the valve body. The gate is movable between a first position at least partially covering the nozzle orifice in the absence of gas flow through the orifice, and a second position wherein the orifice is not covered when gas flows through the orifice.
Abstract:
Injection nozzles for use in a gas distribution device are disclosed. In one aspect, the injection nozzle may include: a tube having a fluid inlet and a fluid outlet; wherein the inlet comprises a plurality of flow restriction orifices. In another aspect, embodiments disclosed herein relate to an injection nozzle for use in a gas distribution device, the injection nozzle including: a tube having a fluid inlet and a fluid outlet; wherein the fluid inlet comprises an annular orifice surrounding a flow restriction device. Injection nozzles according to embodiments disclosed herein may be disposed in a gas distribution manifold used in a vessel, for example, for conducting polymerization reactions, spent catalyst regeneration, and coal gasification, among others.
Abstract:
Provided is a carbon nanotube producing apparatus comprising a reaction chamber that accommodates a substrate that forms carbon nanotubes and reactive gas supply mechanism for supplying a reactive gas to the substrate accommodated in the reaction chamber, in which the reactive gas supply mechanism has two or more shower plates having a plurality of gas ejection holes, the shower plates being overlappingly arranged so that the reactive gas passes therethrough in order and the reactive gas is supplied to a carbon nanotube forming face of the substrate and the shower plates are arranged so that the ejection holes of the shower plates that are adjacent to each other do not overlap each other in a gas ejection direction.
Abstract:
Injection nozzles for use in a gas distribution device are disclosed. In one aspect, the injection nozzle may include: a tube having a fluid inlet and a fluid outlet; wherein the inlet comprises a plurality of flow restriction orifices. In another aspect, embodiments disclosed herein relate to an injection nozzle for use in a gas distribution device, the injection nozzle including: a tube having a fluid inlet and a fluid outlet; wherein the fluid inlet comprises an annular orifice surrounding a flow restriction device. Injection nozzles according to embodiments disclosed herein may be disposed in a gas distribution manifold used in a vessel, for example, for conducting polymerization reactions, spent catalyst regeneration, and coal gasification, among others.
Abstract:
In certain embodiments, a feed injector system includes an inner channel configured to convey at least one of a solid fuel feed or a liquid reactant or moderator to a reaction zone. A first oxidizer channel extends around the inner channel, wherein the first oxidizer channel is configured to convey a first oxidizer stream to the reaction zone. A second oxidizer channel extends around the first oxidizer channel, wherein the second oxidizer channel is configured to convey a second oxidizer stream to the reaction zone. Additionally, a third channel extends around the inner channel and the first and second oxidizer channels, wherein the third channel is configured to convey at least one of the solid fuel feed or the liquid reactant or moderator to the reaction zone.
Abstract:
Described herein is a highly heat integrated steam reformer/combustor assembly that can be used in a fuel processor for hydrogen production from a fuel source. The assembly comprises a reforming section and a combustion section separated by a wall. Catalyst able to induce the reforming reactions is coated on the wall facing the reforming section. Catalyst able to induce the combustion reactions is coated on the wall facing the combustion section. A steam and fuel mixture is supplied to the reforming section where it is reformed to product hydrogen. A fuel and air mixture is supplied to the combustion section where it is combusted to supply the heat for the reformer. Catalytic combustion takes place on the combustion catalyst coated on one side of the wall while catalytic reforming takes place on the reforming catalyst coated on the other side of the wall. Heat transfer is very facile and efficient across the wall. Multiple such assemblies can be bundled to form reactors of any size.
Abstract:
Device for distributing a fluid in a controlled manner, in particular for distributing a gas loaded with particles, the device comprising a pipe (1) provided with at least one inlet orifice (2) and with a series of outlet orifices (3) spread along the pipe (1) and cut in the side wall of this pipe, characterized in that at least one section (4) of the wall, located downstream of at least one outlet orifice and limited by a section (5) of the edge of this orifice, has a shape such that this section of the edge of this orifice is positioned inside the pipe so that, when the device is in service, the flow direction of the fluid exiting this orifice and travelling along said wall section is controlled by the shape of the latter section.