Abstract:
A nonwoven trough and method of construction thereof are provided. The nonwoven trough includes at least one nonwoven wall formed from a mixture of bonded natural cellulosic fibers and thermoplastic fibers. The at least one nonwoven wall extends along a longitudinal axis and has a midsection and opposite end portions. The midsection has a base and a pair of walls extending upwardly from the base to provide the midsection with a generally U-shaped cross-section taken generally transversely to the longitudinal axis. At least one flange extends laterally from the at least one nonwoven wall, wherein the flange is configured for attachment to a vehicle member.
Abstract:
A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
Abstract:
The present invention relates to production method of a composite material wherein the composite material is tensioned and cured to produce a composite material with a single cord or cord fabric reinforced with another component, comprising the steps of adhering at least two layers of compound material, attaching the adhered compound materials inside a hollow frame, placing said frame into a pre-tensioning device, wrapping the cords around the frame with the desired pre-tension, removing the frame together with the compound material and the cords from the pre-tensioning device, placing at least one layer of compound material on the curing tray, placing the coated frame removed from the pre-tensioning device onto the compound material layers, placing at least one more layer of compound material on the coated frame, closing the lid over the curing tray, curing the material and cutting the composite material into strips.
Abstract:
A connection between composites with non-compatible properties and a method of preparing of such connections are provided. The composites comprise first and second type fibers, respectively, as well as resin. The connection comprises a transition zone between the composites having a layered structure. The transition zone may optionally comprise a transition member and the transition member may optionally be integrated with one or more of the composites. Examples of non-compatible properties where the present connection will be appreciated are great differences in stiffness, e.g. Young's modulus, or in coefficient of thermal expansion.
Abstract:
A connection between composites (10, 12) with non-compatible properties and a method of preparing of such connections are provided. The composites comprise first and second type fibres, respectively, as well as resin. The connection comprises a transition zone (52) between the composites (10, 12) having a layered structure. The transition zone may optionally comprise a transition member and the transition member may optionally be integrated with one or more of the composites. Examples of non-compatible properties where the present connection will be appreciated are great differences in stiffness, e.g. Young's modulus, or in coefficient of thermal expansion.
Abstract:
The present invention provides a joining method using a method of laser welding wherein two resin molded bodies can be joined with high welding strength. Specifically, this is a method that joins two thermoplastic resin molded bodies using a method of laser welding; the first resin molded body is a laser light transmissive molded body comprising a thermoplastic resin and cellulose fibers with an α-cellulose content of 80% or more; the second resin molded body is a laser light absorbent molded body containing a thermoplastic resin and a colorant; and the first resin molded body and the second resin molded body are welded by irradiating laser light from the first resin molded body side.
Abstract:
The present invention provides composites prepared from melt blending compositions that generally include cellulosic pulp fibers having an alpha-cellulose purity of greater than 80% by weight, at least one water soluble binder, at least one lubricant, at least one compatibilizer, and at least one matrix polymer. The present invention further provides advantageous temperature profiles and feeding arrangements to be used in conjunction with the melt blending of such composites. The composites of the present invention exhibit reduced discoloration and improved fiber dispersion.
Abstract:
A molded product is made by a process including a step of breaking a waterproof paper for printing paper to give a mixture of cellulose fibers and a polyolefin resin. The waterproof paper is obtained by laminating a base paper produced for printing paper with the polyolefin resin. An additional thermoplastic resin is added to the mixture if necessary. The mixture is then molded so that the ratio by weight of the base-paper-derived cellulose fibers to the total of the polyolefin resin and the additional thermoplastic resin is in the range of 51:49 to 75:25. A moisture-proof container for a light-sensitive material is also produced from a container and a moisture-proof lining layer that are molded so that the ratio by weight of base-paper-derived cellulose fibers to the total thermoplastic resins is in the range of 51:49 to 75:25. The container may comprise an antioxidant and an aldehyde-neutralizing agent.
Abstract:
Low moisture processed cellulose fiber pellets useful in the manufacture of cellulose fiber reinforced polymer products and materials, and an extruder-less process for forming such low moisture cellulose fiber pellets from wet processed cellulose fiber-based waste source materials. The cellulose fiber pellets include processed cellulose fibers and mixed plastics and/or inorganics such as minerals, clay, and the like, and have a moisture content of about 0.1 to 14% by weight. The extruder-less process includes the steps of drying, grinding and pelletizing in a manner capable of forming low moisture cellulose fiber pellets from wet processed cellulose fiber-based waste source materials having a moisture content of about 40-80% by weight.
Abstract:
An elongate composite structural member and method of making the same which is particularly useful for forming the handle of hand-held striking and prying tools or implements. The elongate structure member comprises a foamed in place molded resin composition core and outer skin layer which is reinforced with intermediate layer of structurally strong, unidirectional oriented fibers. The expanded foam resin, intermediate fiber layer and the expanded foam resin outer skin are bound together by the cured foamed resin composition formed during the molding process to form a strong, integral composite structure.