Abstract:
Flugkörper mit stark gepfeiltem Tragwerk, ausgehend von einem Tragwerk (4) der angegebenen Art in Verbindung mit Aufnahme- bzw. Startbehältern (1') in gestapelter Anordnung, sowie ausgehend von der Forderung, die Flugkörper ohne Kraftstoff in den Behältern zu lagern bzw. zu transportieren. Die Kraftstoffbehälter für die Antriebsanlage des Flugkörpers sind von vorn in Räume des Tragwerks einsetzbar und durch Arretierung verriegelbar.
Abstract:
Unbemannter Flugkörper mit stark gepfeiltem Tragwerk, insbesondere Deltaflügeln, der in einem Behälter transportiert und aus dem Behälter mittels eines Hilfsantriebs nach Lösung einer Arretierung gestartet wird und der während des Marschfluges durch ein Propellertriebwerk antreibbar ist, wobei Seitenkraftflächen (25) zur Stabilisierung des Flugkörpers während des Marschfluges aus Einfahrräumen (26) im Bereich der Flügelwurzel der Deltaflügel ausfahrbar sind und ferner eine Reibschlußkupplung (64, 65) am Flugkörper vorgesehen ist, die ohne Zuführung von Energie von aussen den stillstehenden Propeller (6) mit dem im Behälter laufenden Antriebsmotor (7) nach Verlassen des Behälters kuppelt.
Abstract:
Certain exemplary embodiments can provide an AirBox constructed to receive deliveries from a drone. The AirBox can comprise an automatically openable lid; and a wireless receiver that is constructed to receive data concerning a delivery from the drone. The automatically openable lid can open to receive the delivery from the drone.
Abstract:
A container is used to launch a small aircraft, such as an unmanned aerial vehicle (UAV), from a host aircraft. The container protects the UAV from stresses during the initial ejection from a launcher that is part of the host aircraft. The initial stresses may be due to turbulence in the vicinity of the host aircraft, high airspeed, and/or tumbling that may result from the ejection from the host aircraft moving at a high airspeed. The container may deploy a drag device, such as a drogue chute, to slow the container down and reorient the container, prior to deployment of the UAV from the container. During the time between ejection from the host aircraft and deployment from the container, the UAV may be powered up and acquire data, such as global positioning system (GPS) data, to allow the UAV a “hot start” enabling immediate mission commencement.
Abstract:
A unmanned aerial vehicle (UAV) base station for automated battery pack exchange and methods for manufacturing and using the same. The UAV base station includes a battery-exchange system disposed within a housing having a top-plate. The housing contains a battery array having a plurality of UAV battery packs and a mechanical mechanism for automatically removing an expended battery pack from a UAV that lands on the top-plate and replacing the expended battery pack with a charged battery pack. Thereby, the UAV base station system advantageously enables extended and autonomous operation of the UAV without the need for user intervention for exchanging UAV battery packs.
Abstract:
A UAV base station (100) for automated battery pack exchange and methods for manufacturing and using the same. The UAV base station (100) includes a battery-exchange system (109) disposed within a housing (108) having a top-plate (308). The housing (108) contains a battery array having a plurality of UAV battery packs (120) and a mechanical mechanism (125) for automatically removing an expended battery pack (120) from a UAV that lands on the top -plate (308) and replacing the expended battery pack (120) with a charged battery pack (120). Thereby, the UAV base station system advantageously enables extended and autonomous operation of the UAV without the need for user intervention for exchanging UAV battery packs (120).
Abstract:
An unmanned aerial vehicle (UAV) can be deployed from a small stowed package for flight and stowed back into the package after the flight is complete is disclosed. The UAV is retracted to a volume that is less than half of its fully deployed volume. This allows the UAV to be transported to any desired field position on a truck or other convenient transportation. The UAV may also be launched from a ship deck. In a further aspect, the flexible deployment of the UAV will allow a single UAV to be used in place of multiple types of UAVs.
Abstract:
A system and method for deploying a payload with an aerostat uses a mobile transporter for moving the system to a deployment site. Structurally, the system includes a base unit with a rotation head mounted thereon. An envelope container for holding a deflated aerostat is mounted on the rotation head and a rotation of the container on the rotation head positions the aerostat for optimal compliance with the existing wind condition. Also included in the system is an inflator that is mounted on the base unit to inflate the aerostat with a Helium gas. And, the system includes a tether control unit for maintaining a connection with the aerostat during its deployment, in-flight use, and recovery. Preferably, a deployment computer is used for a coordinated control of the rotation head, inflator and tether.