Abstract:
A solution for the allocation of destination calls in an elevator system includes one or more single-deck elevators and one or more multi-deck elevators, in which system the passenger enters a destination call via a destination call device. The destination call entered by the passenger is received, an elevator type to serve the destination call is selected on the basis of an elevator type selection criterion, and the destination call is allocated to an elevator consistent with the elevator type thus selected.
Abstract:
System for controlling the elevators in an elevator system, which elevator system comprises a number of elevators (1A . . . 1H). The system comprises first sensor means (2, 2A . . . 2H), which are arranged in the waiting area of each elevator (1A . . . 1H) on each floor (F, F1, F2, F3 . . . Fn), which sensor means (2, 2A . . . 2H) are fitted to give information about the presence and number of passengers waiting for an elevator at least in the waiting area in question; means for controlling the elevators, which means are fitted to receive information from the sensor means (2, 2A . . . 2H) about the presence and number of passengers waiting for an elevator and to control the movement of the elevators of the elevator system utilizing the information received from the sensor means.
Abstract:
An elevator system includes at least one shuttle elevator and at least two local elevators, the elevator cars of which are arranged to travel in the same elevator hoistway such that they can serve at least one shared transfer floor of a transfer level. The control system of the elevator system receives destination calls given from a destination call appliance, forms a plurality of route alternatives and allocates a destination call to one or more elevators by selecting the best route alternative. When allocating a destination call, the control system takes into account that the elevator cars of the local elevators that travel in the same elevator hoistway cannot simultaneously be at a shared transfer floor in cases in which the route alternative includes a part-trip with a local elevator and a change of elevator at a shared transfer floor.
Abstract:
A car-based running power computing mechanism computes running power values of each car in both cases including cases before and after a newly generated hall call is assigned. A car-based regenerative power computing mechanism computes regenerative power values of each car in the both cases. A car-based future running power computing mechanism computes future running power values of each car in the both cases. A car-based future regenerative power computing mechanism computes future regenerative power values of each car in the both cases. A car-based assigned total evaluation index computing mechanism obtains an in-travel power consumption value and an in-future-travel power consumption value based on the running power values, regenerative power values, future running power values, future regenerative power values and the like, to thereby compute assigned total evaluation indices of each car in the both cases. An assigned car deciding mechanism decides an assigned car based on the assigned total evaluation indices.
Abstract:
The present invention discloses a method and a system for modernizing at least one elevator group, which comprises a plurality of elevators, a group control that controls the elevator group as well as call-giving appliances connected to the group control via the landing appliance bus. According to the solution a new group control, new call-giving appliances for the floor levels and also a new landing call bus are installed in the elevator group; a new group control is connected to the pushbutton interface of the old call-giving appliances for transmitting calls given by passengers from the new group control to the old group control. The elevator calls given by passengers are divided between the modernized subgroup and at least one unmodernized subgroup on the basis of the given selection criterion, and a call addressed to the modernized subgroup is allocated in the new group control to the modernized elevators or a call addressed to the unmodernized subgroup is transmitted via the pushbutton interface to the unmodernized subgroup.
Abstract:
An elevator group control apparatus includes a parameter calculating unit for determining a weighting factor for an item to be evaluated, which is calculated from a running distance estimated by an estimation arithmetic operation unit by taking into consideration a relation between a running distance of an elevator and a passenger average waiting time, and an evaluation arithmetic operation unit for calculating a total evaluated value from an item to be evaluated of a passenger waiting time, an item to be evaluated of the running distance, and the weighting factor determined by the parameter calculating unit. The elevator group control apparatus selects an elevator whose total evaluated value is the best from among the plurality of elevators, and assigns a hall call to the selected elevator.
Abstract:
An elevator group control system includes a reference route generating portion, which for each elevator, generates a reference route which the elevator should follow with respect to the time axis and position axis; and an assignment portion which selects an elevator for assignment to a generated hall call so as to make the actual trajectory of each elevator closer to its reference route. Reference routes which guide the cage's trajectory into temporally equal interval condition are generated, and car assignment is executed to allow the cages to settle in temporally equal interval condition over a long period of time.
Abstract:
A method and system determine peak power consumption over time by a bank of elevator for servicing a set of passenger hall calls and delivery requests, and selecting elevator schedules that keep peak power consumption below a predetermined threshold. For each car in response to receiving a hall call, a set of all possible paths to service all hall calls assigned to the car are determined, in which each path includes a set of all possible segments. A peak power consumption for each possible segment is also determined. The peak power consumptions for the set of all possible segments for each time instant are added to determine a total peak power consumption for each time instant, and a particular path is selected as a schedule to operate the bank of elevator cars, if the total peak power consumption for any instant in time while operating according to the selected schedule is below a predetermined threshold.
Abstract:
The invention concerns a method for solving an optimization task consisting of a plurality of sub-functions in the control of the operation of an apparatus. In the method, a set of a plurality of solution alternatives is generated and, according to the method, each sub-function is normalized. Normalized cost functions of the sub-functions are generated for each solution alternative for solving the optimization task, and based on the normalized cost functions of the sub-functions, a set of solutions to the optimization task is formed. From the set of solutions, the best solution is selected and the apparatus is controlled in accordance with the solution thus selected.
Abstract:
An elevator group control method for allocating landing calls and car calls to elevators so that the objectives set are met. In the method, a car-specific energy consumption file is generated to describe the energy consumption occurring during each trip of the elevator from each floor to each one of the other floors with different loads, and the calls are so allocated that the energy consumption resulting from serving all the active calls is minimized.