Abstract:
The invention relates to a method for biologically cleaning wastewater (A), comprising the following steps: providing a treatment basin (B) having a floor (1) and at least one wall (2) extending from the floor at a wall height (W), having an inlet opening (3) and having at least one outflow opening (9) in the range from 0 to a maximum of 0.5 times the wall height (W), feeding the wastewater (A) through the inlet opening (3) into the treatment basin (B), bringing the wastewater (A) into contact with microorganisms seeded in loose growth bodies (12) received in the treatment basin (B), and discharging the wastewater (A) at least partially cleaned by the action of the microorganisms from the treatment basin (B) through the outflow opening (9), wherein the growth bodies (12) are retained in the treatment basin (B).
Abstract:
Modular systems and methods for fluid dispersion are provided. A base module includes a modular frame structure and fluid distribution conduits secured within the frame structure. Diffuser assemblies or other equipment may be coupled to the fluid distribution conduits via a mating tube. The mating tube is inserted into an aperture in the wall of the fluid distribution conduit, and provides a fluid tight joining method.
Abstract:
Membrane strip diffusers are disclosed, useful for example in aerating wastewater in activated sludge plants. These diffusers have membranes, diffuser bodies comprising gas conduits and, in addition to the conduits, integral membrane supports elongated in the same general direction. Such conduits are for example co-extruded with the diffuser bodies. The supports are apertured to discharge gas into chambers formed beneath the membranes when they inflate, and the membranes have pores to discharge the gas. Ways to edge- and end-seal the membranes to the diffuser bodies and ways to support the diffusers are also disclosed.
Abstract:
A diffuser membrane for use in a wastewater treatment application comprises an additive or coating operative to substantially reduce the ability of at least a portion of the diffuser membrane to buildup static charge. Aeration efficiency and contamination resistance are thereby improved.
Abstract:
The present invention relates to an aeration device for use in a liquid medium. The device includes a housing adapted to float within the medium such that a top portion thereof remains above a top surface of the medium. The housing has a bottom portion and an open side portion. The device further includes a hose affixed to the bottom portion of the housing substantially parallel to the surface of the liquid medium. The hose has a wall with a plurality of pores formed therein. The device further includes a gas-supplying pipe affixed to the hose and means for supplying a gas to the pipe such that the gas passes through the pipe and into the hose.
Abstract:
An apparatus for aerobic biological treatment of waste water and the like includes a tank configured to retain waste water therein, and a wheel rotatably mounted in the tank. The wheel includes a plurality of chambers arranged in axial succession about the circumference of the wheel. The chambers include openings which are oriented generally upwardly and emerge from the waste water adjacent a top dead center position of the wheel and are oriented generally downwardly and submerged in the waste water adjacent a bottom dead center position of the wheel. An air drive mechanism rotates the wheel, and an air pipe communicates with the air drive mechanism, and is disposed generally below the wheel, and is configured to release air bubbles therefrom after the bottom dead center position. A plurality of bubble connectors are connected with and protrude radially outwardly from the wheel at locations preceding the openings, and are shaped to guide the bubbles from the air pipe through the openings into the chambers.
Abstract:
A multi-layer membrane includes a fluorine containing layer and a substrate which are joined through spray coating and heat treatment in a multi-step technique.
Abstract:
The invention relates to an arrangement for introducing gas bubbles into a liquid, a device (1) for fastening a perforated aeration membrane (2) to an aerator base plate (3) as well as to an aerator base plate (3) therefor. The aerator base plate (3) has an undercut groove (4) in at least one rim region thereof, into which a locking body (7) clamping the membrane (2) in said groove (4) fits clampingly. The locking body (7) has a generally circular cross-section. The groove (4) has an at least substantially oval cross-section. The locking body (7) is designed to be generally cylindrical.
Abstract:
An aeration system for a submerged membrane module has a set of aerators connected to an air blower, valves and a controller adapted to alternately provide a higher rate or air flow and a lower rate of air flow in repeated cycles. In an embodiment, the air blower, valves and controller, simultaneously provide the alternating air flow to two or more sets of aerators such that the total air flow is constant, allowing the blower to be operated at a constant speed. In another embodiment, the repeated cycles are of short duration. Transient flow conditions result in the tank water which helps avoid dead spaces and assists in agitating the membranes.
Abstract:
A wastewater treatment method. The method includes establishing a setpoint value of oxidation-reduction potential of a mixed liquor, measuring a measured value of oxidation-reduction potential of the mixed liquor, comparing the measured value of oxidation-reduction potential and the setpoint value of oxidation-reduction potential, generating a control signal based at least in part on the step of comparing, controlling operation of an aeration device using the control signal, acquiring at least one value corresponding to the control signal and adjusting the setpoint value of oxidation-reduction potential using the at least one value. The value includes a frequency of operation of the aeration device.