Abstract:
Disclosed herein is an aeration hose capable of diffusing bubbles of air within a body of water, comprising a) a hose portion derived from a composition, comprising a polyvinyl chloride resin; a first rubber component; a second rubber component; at least one copolymer; at least one low temperature plasticizer; at least one filler comprising titanium dioxide; at least one heat stabilizer; at least one internal lubricant; at least one antioxidant; and at least one biofouling agent, wherein the hose portion comprises an outer hose portion, an inner hose portion and a plurality of hose apertures capable of receiving and diffusing pressurized air, and wherein the hose is flexible and has no memory, wherein the hose apertures are provided therethrough the inner hose portion and the outer hose portion and proportionally spaced about the outer hose portion along a length of the hose portion.
Abstract:
A polyarylene sulfide-derived resin composition which has flowability optimal for insert molding and which can impart superior high- and low-temperature impact properties to a molded body, and an insert-molded body using the resin composition. The resin composition includes a polyarylene sulfide resin having carboxylic terminal groups, an olefin-derived copolymer, glass fibers and calcium carbonate. The weight-average molecular weight of the polyarylene sulfide resin is 15,000-40,000; as copolymerization components, the olefin-derived copolymer includes α-olefins, glycidyl esters of α,β-unsaturated acids, and acrylic esters, and the content of the copolymerization component derived from the glycidyl esters in the resin composition is 0.2-0.6 mass %. Further, the fiber diameter of the glass fibers is 9-13 μm, the average particle diameter of the calcium carbonate is 10-50 μm, and the total content of glass fibers and the calcium carbonate is 45-55 mass % of the resin composition.
Abstract:
Disclosed is a flame retardant resin composition containing a base resin containing a polyolefin based compound, a silicone based compound, a fatty acid metal salt, a flame retardant agent consisting of at least one kind selected from the group consisting of calcium carbonate particles and silicate compound particles, a hindered phenol based compound, and a hindered amine based compound. In the composition, the silicone based compound is blended at a ratio of 0.1 part by mass or more and 10 parts by mass or less relative to 100 parts by mass of the base resin, the fatty acid metal salt is blended at a ratio of 0.1 part by mass or more and 20 parts by mass or less relative to 100 parts by mass of the base resin, the flame retardant agent is blended at a ratio of 5 parts by mass or more and 200 parts by mass or less relative to 100 parts by mass of the base resin, the hindered phenol based compound is blended at a ratio of 0.05 part by mass or more and 10 parts by mass or less relative to 100 parts by mass of the base resin, and the hindered amine based compound is blended at a ratio of 0.05 part by mass or more and 10 parts by mass or less relative to 100 parts by mass of the base resin. The hindered amine based compound has a monovalent group represented by the following formula (1) or the like. (in the formula (1), R1 represents an alkyl group or alkoxy group having 1 to 30 carbon atoms, and R2 to R5 each independently represent an alkyl group having 1 to 6 carbon atoms).
Abstract:
A polyphenylene ether derivative having at least one N-substituted maleimide group represented by the following general formula (I) in a molecule, and a heat curable resin composition, a prepreg, a metal-clad laminate, and a multilayer printed wiring board, each of which uses the polyphenylene ether derivative: wherein R1 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, R2 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, A1 represents a residual group represented by a specific general formula, m is an integer of 1 or more as the number of the structural unit, and x and y each is an integer of 1 to 4.
Abstract:
Disclosed herein are compositions comprising a polyetherimide, a polyester carbonate, and a reinforcement agent; wherein the composition comprises the reinforcement agent in an amount ranging from 1 wt % to 70 wt % relative to the total weight of the composition; wherein the polyester carbonate comprises at least 40 mole % resorcinol based aryl ester linkages. Also, disclosed herein are articles comprising the compositions disclosed.
Abstract:
An acrylic thermoplastic resin composition includes a first acrylic resin having a first structural unit represented by the following formula (1) and a second structural unit represented by the following formula (2), and a second acrylic resin having the first structural unit represented by the following formula (1) and a third structural unit represented by the following formula (3), in which a total content of the first unit is 50 to 95 mass % and a total content of the second structural unit and the third structural unit is 5 to 50 mass % based on a total amount of the first acrylic resin and the second acrylic resin:
Abstract:
Provided is an electric component equipped with a live electrical part and an insulating resin molded article that is molded from a thermoplastic resin composition and is in contact with the live electrical part, wherein: the thermoplastic resin composition includes (A) 60 to 80 parts by mass of a polyphenylene ether resin or a mixture of a polyphenylene ether resin and a styrene resin, (B) 60 to 80 parts by mass of a hydrogenated block copolymer, (C) 5 to 30 parts by mass of a flame retardant, and (D) 0.1 to 3 parts by mass of titanium oxide (in an amount corresponding to 100 parts by mass of the total of (A) to (C)).
Abstract:
The present invention provides a flame retardant composition including a thermoplastic resin, a cellulose, a rubber having a siloxane bond, and a flame retardant agent.
Abstract:
Disclosed is a hollow-fiber membrane blood purification device having an improved antioxidant performance, good water permeation performance and blood compatibility performance, and economic rationality. The present invention provides a hollow-fiber membrane blood purification device including hollow-fiber membranes filled in a vessel, in which the hollow-fiber membranes contain a hydrophobic polymer, a hydrophilic polymer and a fat-soluble vitamin, when a hollow-fiber membrane bundle is divided into five sections in a lengthwise direction and divided sections positioned in endmost portions are defined as body end portions, an amount of the fat-soluble vitamin present in at least one of the body end portions is the largest among amounts of the fat-soluble vitamin present respectively in all the divided sections, and an amount of the fat-soluble vitamin per m2 of a hollow-fiber membrane inner surface of the at least one body end portion is 20 mg/m2 or more and 300 mg/m2 or less.
Abstract translation:公开了具有改进的抗氧化性能,良好的水渗透性能和血液相容性能以及经济合理性的中空纤维膜血液净化装置。 本发明提供了一种中空纤维膜血液净化装置,其包括填充在容器中的中空纤维膜,其中中空纤维膜含有疏水性聚合物,亲水性聚合物和脂溶性维生素,当中空纤维膜 束在长度方向上分为五个部分,并且位于最末端的分割部分被定义为主体端部,存在于至少一个身体端部中的脂溶性维生素的量在脂肪的量中最大 所有分割部分分别存在可溶性维生素,至少一个身体端部的中空纤维膜内表面的每1m2的脂溶性维生素的量为20mg / m 2以上且300mg / m 2 或更少。
Abstract:
The present invention provides a method for producing a resin composition, which, by means of simple steps, can uniformly disperse microfibrillated plant fiber in a highly hydrophobic resin and can impart enhanced mechanical strength to a molding material obtained by molding the resin composition. The present invention further provides a resin composition having excellent heat resistance and low linear thermal expansion. The present invention relates to a method for producing a resin composition, the method including a step of mixing a thermoplastic resin or thermosetting resin (A), and modified plant fiber (b) or modified microfibrillated plant fiber (B), in the presence of an organic liquid (C), the modified plant fiber (b) or modified microfibrillated plant fiber (B) being obtained by modification with an alkyl or alkenyl succinic anhydride in a liquid capable of swelling microfibrillated plant fiber (B′) or plant fiber (b).