Abstract:
The present invention is directed to an apparatus for distributing a cable-pulling composition onto a cable as it is being pulled through a conduit. In one embodiment, the cable pulling composition is a block of an enhanced composition, e.g., consisting essentially of boron nitride that facilitates the pulling of cables through conduits. The invention further relates to a method for pulling cables through conduits by applying an effective amount of boron nitride composition onto the cable surface through the use of the cable-pulling apparatus of the invention.
Abstract:
A lubricant composition is disclosed comprising a superabsorbent polymer combined with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. In the composition, the material for decreasing friction comprises a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A method of lubricating a surface is also disclaosed comprising coating said surface with the lubricating composition comprising the superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
An exemplary embodiment is directed to an equipment lubricating composition comprising useful microorganisms. An exemplary embodiment comprises a water insoluble, water-absorbent substance and an encapsulated microorganism component including viable microorganisms. This encapsulating material may encapsulate and protect the microorganisms by essentially preventing the microorganisms from contacting the external environment. Based on the protection afforded by the encapsulation, exemplary embodiments may include previously inhospitable carrier compounds such as particulate machine lubricants.
Abstract:
The present invention is directed to enhanced compositions that facilitate the pulling of cables through conduits. In one embodiment, the composition comprises a sufficient amount of boron nitride, which, upon application onto the cable surface, allows the cable to be pulled faster and/or with less force through the conduit than without the boron nitride present. The invention further relates to a method for pulling cables through conduits by applying an effective amount of boron nitride composition onto the cable surface. Lastly, the invention relates to an apparatus for distributing a cable-pulling composition comprising a block of boron nitride onto a cable as it is being pulled through a conduit.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
Abstract of DisclosureA process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, and acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft copolymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbant polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
Abstract of DisclosureA process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, and acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft copolymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbant polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A method for treatment of bacterial infections with rifalazil administered once-weekly or twice-weekly. A method for treatment of tuberculosis caused by Mycobacterium tuberculosis, infections caused by Mycobacterium avium complex, infections caused by Chlamydia pneumoniae and infections caused by Helicobacter pylori by administering to a patient suffering from the bacterial infection 1-100 mg of rifalazil once or twice a week. In this dose regimen, the treatment is fast, efficacious and eliminates undesirable secondary symptoms observed with daily doses of 1-50 mg of rifalazil.
Abstract:
Boric acid-containing lubricants are disclosed which consist essentially of boric acid and at least one other powder metallurgy lubricant and provide a synergistic free-flowing composition. There are also provided novel compositions of matter for forming sintered metal components comprising a mixture of sinterable, powdered metal and the said lubricants.
Abstract:
A self-lubricating solid coating that contains three layers of lubricants is disclosed. The solid lubricant may be prepared from chromium silicide or chromium carbide; disulfide and diselenide of tungsten, molybdenum, niobium, or tantalum; and silver or gold. This material combination provides superior wear and friction reduction over the temperature range applied. In this invention, chromium silicide or chromium carbide is a hard lubricant with a low wear property to protect the substrate metal; disulfide or diselenide is a soft lubricant with a very low coefficient of friction; and silver or gold with their high thermal conductivity are effective in conducting heat especially at high sliding velocities. Both silver and gold have a low friction coefficient with high oxidative stability. The use of this solid lubricant allows engine manufacturers to develop high temperature engine and partially or totally eliminate the use of liquid lubricants in engines, thus reducing the environmental pollution caused by liquid lubricants in various engines.