Abstract:
Bei einer Vorrichtung zum Fördern von pneumatisch geförderten Brennstoffen, insbesondere festen Sekundärbrennstoffen bei Brennern für Drehrohröfen, umfassend ein zentrales Förderrohr (1), welches ein offenes Ende mit einer Austritts-Öffnung (2) für die pneumatisch geförderten Brennstoffe und einen gegenüberliegenden Endbereich aufweist, in dem die Brennstoffe dem Förderrohr (1) aufgegeben werden, mündet der Austrittsöffnung des Förderrohrs (1) benachbart wenigstens eine mit einer Luftzufuhr in Verbindung stehende Leitung (6,7,9) schräg nach vorne gerichtet in das Innere des Förderrohrs (1).
Abstract:
A burner outlet set for a downshot firing burner is described comprising a first outlet array having at least one primary outlet, and at least one vent air outlet disposed either side of the primary outlet in an array direction of the first outlet array; second and third outlet arrays each comprising an array of secondary air outlets, respectively disposed either side of the a first outlet array. A burner system with a plurality of such burner outlet sets, a burner arch configured for downshot firing and having one or more such burner sets, and a combustion furnace with one or more such arches are also described.
Abstract:
A combustion burner 1 includes a fuel nozzle 2 that injects fuel gas prepared by mixing solid fuel and primary air, secondary air nozzles 3, 4 that inject secondary air from the outer periphery of the fuel nozzle 2, and a flame holder 5 that is arranged in an opening of the fuel nozzle 2. In the combustion burner 1, the flame holder 5 has a splitting shape that widens in the flow direction of the fuel gas. When seen in cross section along a direction in which the flame holder 5 widens, the cross section passing through the central axis of the fuel nozzle 2, a maximum distance h from the central axis of the fuel nozzle 2 to the widened end of the flame holder 5 and an inside diameter r of the opening 21 of the fuel nozzle 2 satisfy h/(r/2)
Abstract:
A pulverized coal burner for an oxyfuel combustion boiler which attains uniform combustion from a pulverized coal burner and which constrains a temperature rise of an oxygen injection nozzle is provided. The burner includes burner inner and outer cylinders arranged to penetrate a wind box and come close to a throat portion. A pulverized coal feed passage is provided between the burner inner and outer cylinders. A plurality of oxygen injection devices are arranged outwardly of the burner outer cylinder so as to directly feed oxygen ahead of the burner outer cylinder.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A combustion system with a combustion area in a boiler including a fuel pipe for delivering fuel is disclosed. A duct having a bend extended there through is in fluid communication with the fuel pipe and the combustion area of the boiler. The duct has an outer perimeter and an inner perimeter. The duct includes a first partition plate to form a first parallel flow of the fuel between the outer perimeter and the first partition plate, upstream of the bend.