Abstract:
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined “features” with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.
Abstract:
Provided are a method and an apparatus of forming a solar radiation model applying topographical effects, the method comprising: calculating a slope angle and a slope aspect of a selected point on a digital elevation model data; calculating a final direct solar radiation of the selected point; calculating a final diffuse solar radiation of the selected point using the slope angle of the selected point, a sky-view factor of the selected point, and a diffuse solar radiation on the horizontal surface of the selected point; and calculating a global solar radiation using the final direct solar radiation and the final diffuse solar radiation.
Abstract:
A unitized cladding system that incorporates energy reducing and harvesting technologies may be installed on a building's exterior wall to reduce the building's net energy consumption and costs. A method for configuring a unitized cladding system to optimize a building's energy savings involves measuring the building's current energy consumption based on information relating to the building's site and composition, designing and assembling cladding units that incorporate suitable energy saving and harvesting modules, and measuring the effects of the cladding system on the building's net energy consumption. This method may be enabled by a software program product.
Abstract:
A solar energy collection system can include a plurality of heliostats configured to reflect sunlight to a target mounted on a tower. Each of the heliostats can have a heliostat controller configured to control a respective heliostat so that the sunlight reflected therefrom is directed to at least one of a plurality of cameras. The cameras can be oriented to image the heliostat. A second controller can be configured to compute geometry data that defines a geometry of the surface of the heliostat from captured images thereof. The geometry data can designate a plurality of subsections of the surface. The computing by the second controller can include storing data indicating sections of the captured images corresponding to the plurality of subsections of the heliostat. The second controller can also calculate data indicating respective surface normals of each of said subsections of each of said heliostat.
Abstract:
The present disclosure relates to operating sun-tracking assemblies in response to one or more wind parameters or conditions. By judiciously reorienting one or more sun-tracking assemblies in response to detected or predicted wind conditions, the potential for wind- damage may be reduced. Some of the sun-tracking assemblies may act as a wind buffer for more fragile or sensitive components, thereby protecting them from damage. Such wind- sensitive components may be other sun-tracking assemblies arranged downwind from the reoriented assemblies. The downwind sun-tracking assemblies may continue to operate normally or substantially normally (i.e., to track the sun) despite the presence of the wind. During times of reduced or no wind, the sun-tracking assemblies may continue to track the sun until wind conditions require reorientation.
Abstract:
An energy-management application may be resident on a mobile computing device to access information and control components associated with one or more solar generation sites. A graphic user interface presents multiple pages to both 1) monitor information regarding the solar generation sites and 2) control components within the solar generation sites from the mobile computing device. The application detects as an input on a currently displayed page from the sequence of multiple pages both a rate and a pattern of finger swipe gestures made on the currently displayed page. The application, in response to detection of both the rate and pattern of the finger gestures on the touch screen display, performs at least one of 1) activation of one or more of the data items, one or more of the links, or one or more of the objects, and 2) navigation to another page in the sequence of pages.
Abstract:
In a hot water supply system having a solar heater that heats a heating medium with absorbed solar heat, a cogeneration unit that heats the medium by heat exhausted from an engine, a hot water supply unit with a heat exchanger for heat-exchanging between the medium and water supplied from a water supply source to generate the hot water, a medium circulator that circulates the medium among the solar heater, cogeneration unit and heat exchanger, an electric heater that heats the hot water with the power generated by the generator, a heat absorption amount to be adsorbed by the solar heater is estimated and operations of the cogeneration unit and the electric heater are controlled based on the estimated heat absorption amount, thereby enabling to improve energy efficiency of the entire system.
Abstract:
In a method for forecasting shadowing of a photovoltaic (PV) system due to cloud formation or movement, part of the firmament is imaged with fisheye optics onto the input optics of a digital camera. Pixel groups associated with luminous intensity ranges are formed. The spatial arrangement of the groups is analyzed to forecast shadowing of a photovoltaic system. A line extending from the PV system to the sun is formed and is continuously tracked. A reference line located inside a region around the line is formed. Passage of clouds across a reference line is analyzed. The result of the analysis is used to increase the electric power from the PV system to a minimum value through supply of additional backup energy or to reduce the electric power consumption by disconnecting users to ensure that key users do not experience a drop in supplied power below a minimum value.
Abstract:
A user display for a healthy home or like building structure. In a specific embodiment, the display includes a hardware housing and a display device coupled to the hardware housing. The display includes a plurality of graphical objects corresponding respectively to a plurality of different loads numbered from a through N, where N is an integer greater than 1. As an example, the loads can include, among others, air conditioning, water, heat, electricity, swimming pool, and others. In a specific embodiment, each of the graphical objects is displayed in a common unit of measurement. In a specific embodiment, each of the graphical objects comprises a total demand portion and a fraction of renewable energy portion. Of course, there can be other variations, modifications, and alternatives.
Abstract:
In one embodiment, an apparatus is provided. The apparatus includes a first rail coupled to a second rail, a third rail coupled to the second rail, and a fourth rail coupled to the first rail and the third rail. The apparatus may form a rectangular frame from the four rails. The rails may be coupled through use of corner connectors or may be mitered and coupled through use of brackets in an abutting relationship. Additionally, further rails may be added by interposing the additional rails between a pair of the first, second, third and fourth rails, to extend the frame, and such additions may involve connectors or abutting rails and brackets, for example. The rails may have support ledges. Alternatively, the rails may have slots allowing for support brackets which slide along the slots. Moreover, the rails may be anchored using roof anchoring components to various surfaces. Additionally, the rails may support photovoltaic or other solar panels, and may have caps or top brackets to maintain the position of such solar panels.In another embodiment, a method is provided. The method includes reviewing solar days of a site. The method further includes reviewing geographical features of the site. Also, the method includes estimating a guarantee of available solar energy for the site. Moreover, the method includes installing a solar system at the site.