Abstract:
Capteur (100) de motif thermique comportant plusieurs pixels (102) comprenant chacun une capacité pyroélectrique formée par un empilement comprenant: - une électrode inférieure (106); - une portionpyroélectriqueinférieure (110) disposée sur l'électrode inférieure et comprenant du PVDF et/ou un copolymère de PVDF; - une portion pyroélectrique supérieure (112) disposée sur la portion pyroélectrique inférieure et comportant un composé formé de PVDF et/ou d'un copolymère de PVDF, et de nanoparticules et/ou de microparticules d'un matériau pyroélectrique de structure cristalline de type pérovskite et/ou de ZnO et/ou de PVDF et/ou d'un copolymère de PVDF; - un élément chauffant (114) comprenant une portion de matériau électriquement conducteur disposée entre les portions pyroélectriques telle qu'une ou plusieurs parties de la portion pyroélectrique inférieure soient directement en contact contre la portion pyroélectrique supérieure; - une électrode supérieure (116) disposée sur la portion pyroélectrique supérieure.
Abstract:
A passive infrared sensor system comprising: a direct current (DC) voltage source supplying a DC voltage; a passive infrared sensor supplied with the DC voltage, the passive infrared sensor comprising at least one sensor element; an alternating current (AC) voltage source supplying an AC voltage, the AC voltage source arranged to induce an alternating current to flow through said at least one sensor element; an amplifier arranged to amplify an output signal that is output from the passive infrared sensor to generate an amplified output signal; and a filter arranged to filter the amplified output signal to provide an output of the passive infrared sensor system, wherein the filter is configured to filter a frequency of the AC voltage.
Abstract:
A motion sensor has at least two tiers of monitored volumes that are offset from each other. Electromagnetic radiation, such as infrared light, is directed from the monitored volumes onto at least two sets of detector elements having separate outputs on a pyroelectric substrate of an infrared detector. As a warm object, such as a human or an animal, moves through the monitored volumes, the warmth from the object causes the voltage on the outputs of the infrared detector to change. The resultant waveforms are compared and if the two waveforms have a phase relationship corresponding to a critical phase angle that is based on the pitch of the monitored volumes and the offset between the tiers of monitored volumes, an animal-immune motion indication is generated.
Abstract:
Die Erfindung schafft eine mikromechanische Sensorvorrichtung und ein entsprechendes Herstellungsverfahren. Die mikromechanische Sensorvorrichtung umfasst ein Substrat (1) mit einer Vorderseite (VS) und einer Rückseite (RS), wobei auf der Vorderseite (V) des Substrats (1) eine Mehrzahl von Säulen (S1, S2) gebildet ist. Auf jeder Säule ist ein jeweiliges Sensorelement (P1, P2) gebildet, das eine größere laterale Ausdehnung als die zugehörige Säule (S1, S2) aufweist, wobei seitlich der Säulen (S1, S2) unterhalb der Sensorelemente (P1, P2) ein Hohlraum (H) vorgesehen ist. Die Sensorelemente (P1, P2) sind durch jeweilige Trenngräben (G1, G2) lateral voneinander beanstandet und über die jeweilige zugehörige Säule (S1, S2) an einem jeweiligen zugehörigen Rückseitenkontakt (V6, E1; V7, E1) elektrisch kontaktiert.
Abstract:
The present disclosure provides a human body detecting device capable of increasing the sensitivity. Multiple first infrared ray reception paths (71) are defined by any one of multiple lenses (30) and multiple detecting units (24). Multiple second infrared ray reception paths (72) are defined by one lens (30) adjacent to the any one of multiple lenses (30) and multiple detecting units (24). Lens array (3) is configured so that one of multiple first infrared ray reception paths (71) and one of multiple second infrared ray reception paths (72) overlap with each other. The front-side electrodes of detecting units respectively corresponding to one first infrared ray reception path (71) and one second infrared ray reception path (72) of the multiple detecting units have the same polarity.
Abstract:
A motion sensor has at least two tiers of monitored volumes that are offset from each other. Electromagnetic radiation, such as infrared light, is directed from the monitored volumes onto at least two sets of detector elements having separate outputs on a pyroelectric substrate of an infrared detector. As a warm object, such as a human or an animal, moves through the monitored volumes, the warmth from the object causes the voltage on the outputs of the infrared detector to change. The resultant waveforms are compared and if the two waveforms have a phase relationship corresponding to a critical phase angle that is based on the pitch of the monitored volumes and the offset between the tiers of monitored volumes, an animal-immune motion indication is generated.
Abstract:
The invention relates to a method for measuring a temperature (T1, T2) using a sensor with a metal-insulator-semiconductor structure which is connected as a capacity, comprising a temperature-dependent self-discharge (112). The method comprises a step of determining a temperature information, which represents the temperature (T1, T2) of the sensor, using an electrical voltage potential (116, 118) applied at the capacitance at a measured time point (114).
Abstract:
A thin film pyroelectric imaging array (N, M) fabricated as a Si wafer. A thin film (40) of PbTiO3 is deposited on a thermally isolated bridge (45). The bridge (45) suspends the PbTiO3 sensor (40) over a preferentially etched cavity (70) in the Si wafer (10). Improved thermal isolation increases the responsivity of the sensor (33) to incident radiation. The pyroelectric sensor (33) formed can operate effectively at room temperature.