Abstract:
An apparatus and method for detecting at least one component gas in a sample includes a radiation source for providing radiation along an optical path in a pre-selected spectral band having at least one absorption line of the component gas to be detected and an optical detector for detecting radiation at the optical path. A sample chamber is positioned in the optical path between the source and the optical detector to contain a quantity of a sample gas. At least one gas cell enclosing an amount of the gas to be detected is fixedly positioned in the optical path in series with the gas chamber. A mathematical relationship is determined between the detected radiation and the concentration of a sample gas filling the sample chamber.
Abstract:
Optical systems are provided. One such optical system includes an optical source that propagates a source beam of light. A diffracting component is optically coupled to the optical source and is operative to receive the source beam and produce a diffracted beam. A target is located to receive the diffracted beam. Additionally, a compensating system repositions at least one of the optical source, the diffracting component, and the target in response to a detected change in refractive index of a medium through which the diffracted beam propagates so that the diffracted beam continues to be received by the target. Methods and other systems also are provided.
Abstract:
Apparatus and methods for use in measuring the moisture content of heavy-grade sheets of paper during their continuous manufacture. In one aspect, means employing infrared absorption techniques for determining the fiber weight per unit area of a sheet having a fiber weight of up to 1100 grams per square meter are provided. In another aspect, means employing infrared absorption techniques including the use of two moisture absorption bands and associated moisture reference bands for calculating the average temperature of the sheet are provided. The latter aspect may be used to produce an indication of moisture weight per unit area, wherein the indication is substantially independent on changes in the average temperature, and enables accurate measurement of the moisture weight per unit area of heavy grades of paper having moisture weights of up to 450 grams per square meter. The former aspect may be employed in measuring the moisture content of heavy grade of paper having moisture weights of up to 90 grams per square meter.
Abstract:
System and apparatus for robust, portable gas detection. Specifically, this disclosure describes apparatuses and systems for optical gas detection in a compact package using two optical pathways. There is a need for a very compact, low-power, gas detection system for gases such as CO2, NOx, water vapor, methane, etc. This disclosure provides an ultra-compact and highly stable and efficient optical measurement system based on principals of optical absorption spectroscopy using substantially collinear pathways.
Abstract:
A Concentration measurement device 100 comprises: a measurement cell 4 having a flow path through which a gas flows, a light source 1 for generating incident light to the measurement cell, a photodetector 7 for detecting light emitted from the measurement cell, a pressure sensor 20 for detecting a pressure of the gas in the measurement cell, a temperature sensor 22 for detecting a temperature of the gas in the measurement cell, and an arithmetic circuit 8 for calculating a concentration of the gas based on an output P of the pressure sensor, an output T of the temperature sensor, an output I of the photodetector, and an extinction coefficient α, wherein the arithmetic circuit 8 is configured to calculate the concentration using the extinction coefficient α determined on the basis of the output of the temperature sensor 22.
Abstract:
Quantitative colorimetric carbon dioxide detection and measurement systems are disclosed. The systems can include a gas conduit, a colorimetric indicator adapted to exhibit a color change in response to exposure to carbon dioxide gas, a temperature controller operatively coupled to the colorimetric indicator and configured to control the temperature of the colorimetric indicator, an electro-optical sensor assembly including a light source or sources adapted to transmit light to the colorimetric indicator, and a photodiode or photodiodes configured to detect light reflected from the colorimetric indicator and to generate a measurement signal, and a processor in communication with the electro-optical sensor assembly. The processor can be configured to receive the measurement signal generated by the electro-optical sensor assembly and to compute a concentration of carbon dioxide based on the measurement signal. Methods for using the systems are also disclosed including providing a breathing therapy to a patient or user.
Abstract:
Measuring apparatus-calibration device for calibrating a measuring apparatus-temperature sensor of a, in particular optical, measuring apparatus, wherein the measuring apparatus-calibration device comprises a, preferably measuring apparatus-external, calibration-temperature sensor, which is traceably calibratable itself, for determining a calibration temperature in the region of a measuring surface of the measuring apparatus and a determination unit which is adapted for determining an information which is indicative for a discrepancy between a measuring apparatus-temperature which is captured by the measuring apparatus-temperature sensor in the region of the measuring surface and the calibration temperature, on whose basis the measuring apparatus-temperature sensor is calibratable.
Abstract:
A device for determining at least one condition parameter relating to a concentration or a partial pressure of an analyte in a gaseous medium, the device including at least one light source configured to emit light; at least one light receiver configured to detect the light; at least one optical sensor unit, and at least one temperature measuring device configured to measure a temperature of the optical sensor unit at least indirectly, wherein at least the light source, the light receiver and the temperature measuring device are arranged within a housing and at least the sensor unit is arranged outside of the housing, wherein at least one optical property of the sensor unit is a function of the condition parameter of the analyte, wherein light rays emitted by the sensor unit due to the sensor unit being irradiated by the light source are detectable by the light receiver.
Abstract:
A method and apparatus is provided for concentration determination of at least one component in an acid catalyst for hydrocarbon conversion containing an unknown concentration of an acid, an acid-soluble-oil (ASO), and water. An instrument configured for measuring a property of the acid catalyst, has responsivities to concentrations of one of the acid, ASO, and water, substantially independent of the concentrations of the others of the acid catalyst, ASO, and water. A temperature detector is configured to generate temperature data for the acid catalyst. A processor is configured to capture data generated by the temperature detector and the instrument, and to use the data in combination with a model to determine a temperature compensated concentration of the one of the acid, the ASO, and the water. Optionally, one or more other instruments configured for measuring other properties of the liquid mixture may also be used.
Abstract:
A target gas sensor employing a radiation source (20) and a radiation sensor (30) including a reference radiation detector (31), a target radiation detector (32), a temperature sensor (34), a temperature controller (35) and a target gas detection processor (37). In operation, radiation source (20) controls a propagation of radiation (RAD) through a gas mixture (GM) contained by an airway (10) to radiation sensor (30). Reference radiation detector (31) generates a reference detection signal (RD) indicative of a detected magnitude of a reference wavelength (λREF) of the radiation, and target radiation detector (32) generates a target detection signal (TD) indicative of a detected magnitude of a target wavelength (λTG) of the radiation. Temperature sensor (34) senses a temperature of radiation detectors (31, 32) whereby temperature controller (35) regulates a heating of the radiation detectors (31, 32) relative to a regulated detector temperature (TREG). Target gas detection processor (37) measures the target gas concentration within the sample of the gas mixture (GM) as a function of an absorbing spectral response ratio (SRRA) and a temperature compensation (TPC).