Abstract:
A device comprising an illumination means and a light sensing means, that can examine and memorize a discrete color of an object based on the magnitude of the reflected light bouncing off of the colored surface in at least three areas of the electromagnetic spectrum. The device also provides output as a visually and/or audibly perceptible signal for deciphering the color. The color range identified by the device is not limited to the visible spectrum and may include infra-red and ultra-violet light. A storage means for memorizing colors may also be included in the device. Applications of ColorStick technology may include children's toys, aids for the visually handicapped (e.g. blind or color blind individuals), designers, internet shoppers, gardeners, etc.
Abstract:
A scatter signal is produced from light scattered by a precipitate formed by a chemical reaction and non-specific scatter sources. A blanking signal is produced from light scattered only by the non-specific scatter sources that contribute to the scatter signal, and the blanking signal is subtracted from the scatter signal to dynamically produce a signal indicative of the difference between the scatter signals to reduce the effects of non-specific scattering sources in determining the rate of change of the light scattered by the precipitate. One of the scatter signals may be stored and then combined with the other, or the signals may be measured simultaneously and then combined.
Abstract:
To provide sufficient sensitivity, spectral resolution and speed of measurement for field environmental measurements in a portable spectroradiometer, a silicon photodiode receives light: (1) having a bandwidth in the range of between 2 and 15 nm (nanometers) from a pivotable concave holographic diffraction grating within the wavelength range of between 250 and 1150 nm at a scanning rate in the range of 20 to 100 nm per second; (2) having stray light of high intensity and undesired frequencies and the shorter wavelength harmonics of the selected frequency range blocked by filters; and (3) having flux of at least 10 microwatts per square meter of diffuser plate for each nanometer of bandwidth. Automatic electrical zeroing is obtained by blocking all light once at the beginning of each scan, obtaining an electrical drift-related signal and using the drift signal to adjust the measured signal during the scan. Several different sensing interfaces can be used, including a quartz, light fiber probe having at least a 50% packing density and a cone angle of at least 24 degrees. The data and the programming storage is at least 30K bytes but the instrument uses no more than watts of power when the instrument is not scanning.
Abstract:
An active-source-pixel, integrated device capable of performing biomolecule detection and/or analysis, such as single-molecule nucleic acid sequencing, is described. An active pixel of the integrated device includes a sample well into which a sample to be analyzed may diffuse, an excitation source for providing excitation energy to the sample well, and a sensor configured to detect emission from the sample. The sensor may comprise two or more segments that produce a set of signals that are analyzed to differentiate between and identify tags that are attached to, or associated with, the sample. Tag differentiation may be spectral and/or temporal based. Identification of the tags may be used to detect, analyze, and/or sequence the biomolecule.
Abstract:
The present invention relates to a computer-implemented method including software that make use of pivot-normalization in spectrophotometric and/or colorimetric analysis for pigment identification within an unknown complex or simple coating. The present invention is particularly useful for reliably matching the texture and/or gonioapparent effect(s) occurring within an unknown target coating.
Abstract:
A universal rapid diagnostics test reader is disclosed and described herein that includes a set of control electronics, a digital camera component, an illumination component, a housing component, and a rapid diagnostics test tray, wherein the tray can hold at least one rapid diagnostics test having a shape and a size in a fixed position relative to the digital camera component and the illumination component, and wherein the reader can accommodate more than one different rapid diagnostics test. Methods are also disclosed that include: providing at least one first rapid diagnostics test having a first physical size, first feature and first format; providing at least one second rapid diagnostics test having a second physical size, second feature and second format; inserting the first rapid diagnostics test in a universal rapid diagnostics test reader; analyzing the first rapid diagnostics test using the universal rapid diagnostics test reader; removing the first rapid diagnostics test from the reader; inserting the second rapid diagnostics test in a universal rapid diagnostics test reader without any mechanical adjustments of the reader or without the use of any additional parts or additional inserts; and analyzing the second rapid diagnostics test using the universal rapid diagnostics test reader.
Abstract:
A measuring device includes a first optical sensor row and a second optical sensor row between which a planar object to be measured is placed. The direction of the first sensor row and the direction of the second sensor row differ from one another. Each sensor of the first sensor row forms data representing a distance between the object to be measured and the sensor. Each sensor of the second sensor row forms data representing a distance between the object to be measured and the sensor in order to determine at least one property of the object to be measured on the basis of the data.
Abstract:
A measuring device comprises a first optical sensor row (200) and a second optical sensor row (202) between which a planar object (204) to be measured is placed. The direction of the first sensor row (200) and the direction of the second sensor row (202) differ from one another. Each sensor (208) of the first sensor row (200) forms data representing a distance between the object (204) to be measured and the sensor (208). Each sensor (210) of the second sensor row (202) forms data representing a distance between the object (204) to be measured and the sensor (210) in order to determine at least one property of the object (204) to be measured on the basis of said data.