Abstract:
A liquid crystal display (LCD) panel employs a cholesteric polarizer which passes light of a first circular polarization, but reflects light of a second circular polarization. The LCD panel may be monochrome or color; in the color embodiments, several different color filters are used, each having one or more cholesteric polarizers tuned to a specific bandwidth in the visible spectrum. These polarizers replace dyed (neutral or dichroic) polarizers of prior art LCD panels, and provide improved color purity. The invention may be enhanced by providing a light recycling scheme whereby the handedness of the circularly polarized light reflected by the polarizers is changed and redirected back to the polarizers. This recycling scheme may also be adapted to provide an overhead projector having a high output polarized light source, particularly useful in conjunction with an LCD panel.
Abstract:
According to one embodiment, a liquid crystal element includes a first transparent substrate, a second transparent substrate, and a first liquid crystal layer cured. The first liquid crystal layer contains first cholesteric liquid crystal and has a reflective surface which reflects first circularly polarized light having a first wavelength. A first helical axis of the first cholesteric liquid crystal is tilted in a uniform direction over an entire area of the first liquid crystal layer. Each of a first outer surface of the first transparent substrate and a second outer surface of the second transparent substrate forms an interface which totally reflects the first circularly polarized light reflected in the first liquid crystal layer.
Abstract:
A display module includes a display panel and a reflective optical film. The display panel has a display surface. The reflective optical film is disposed on the display surface of the display panel. The reflective optical film includes a cholesteric liquid crystal layer and a first anti-glare layer. The first anti-glare layer is disposed between the display panel and the cholesteric liquid crystal layer.
Abstract:
There is provided a cholesteric liquid crystal display device including a first liquid crystal panel containing a first cholesteric liquid crystal substancecrystal material for reflecting a light of a first color, a second liquid crystal panel containing a second cholesteric liquid crystal substancecrystal material for reflecting a light of a second color, a third liquid crystal panel containing a third cholesteric liquid crystal substancecrystal material for reflecting a light of a third color, a light absorption layer combined to a lower portion of the third liquid crystal panel, a first double-sided adhesive buffer layer configured to combine the second liquid crystal panel to a lower portion of the first liquid crystal panel and a second double-sided adhesive buffer layer configured to combine the third liquid crystal panel to a lower portion of the second liquid crystal panel.
Abstract:
Disclosed is an LCD device which facilitates to realize a high aesthetic sense by obtaining a colorful and entirely-unified color screen under the circumstance that an image is not displayed in a turning-off state, wherein the LCD device comprises: a liquid crystal module which comprises a liquid crystal panel for displaying an image; a set cover which supports the liquid crystal module; and a color realization film which selectively transmits light with a predetermined wavelength when the liquid crystal module is turned-off, wherein the color realization film comprises a cholesteric liquid crystal layer (CLC), a quarter wave plate (QWP), and a first adhesive layer formed between the cholesteric liquid crystal layer (CLC) and the quarter wave plate (QWP).
Abstract:
A liquid crystal display device, which comprises: a backlight source (1); a first handedness cholesteric liquid crystal film layer (2), located at an upper side of the backlight source (1) as a light emitting surface; an array substrate (3), located at an upper side of the first handedness cholesteric liquid crystal film layer (2); a color filter substrate (5), located at an upper side of the array substrate (3); and a second handedness cholesteric liquid crystal layer (4), sandwiched between the array substrate (3) and the color filter substrate (5), the first handedness being opposite to the second handedness. The liquid crystal display device greatly improves light efficiency and transmittance of the display and saves the processing steps and manufacturing costs.
Abstract:
Disclosed is an LCD device which facilitates to realize a high aesthetic sense by obtaining a colorful and entirely-unified color screen under the circumstance that an image is not displayed in a turning-off state, wherein the LCD device comprises: a liquid crystal module which comprises a liquid crystal panel for displaying an image; a set cover which supports the liquid crystal module; and a color realization film which selectively transmits light with a predetermined wavelength when the liquid crystal module is turned-off, wherein the color realization film comprises a cholesteric liquid crystal layer (CLC), a quarter wave plate (QWP), and a first adhesive layer formed between the cholesteric liquid crystal layer (CLC) and the quarter wave plate (QWP).
Abstract:
An LCD device is disclosed. The LCD device includes: a liquid crystal display panel; a backlight unit, under the liquid crystal display panel, configured to apply light to the liquid crystal display panel; a compensation film disposed on the liquid crystal display panel; and a fixing member disposed over the compensation film and configured to fix the liquid crystal display panel, the backlight unit, and the compensation film. The compensation film is configured to include a retardation film and a cholesteric liquid crystal polarizing film and to reflect wavelength band light suitable for a color tone of the fixing member, so that a color tone for a standby screen state of the liquid crystal display panel is determined.
Abstract:
The present invention is related to a method of method of manufacture of a reflective polarizing film that can improve brightness of a liquid crystal display device remarkably by making a liquid crystal film that can cover visible light by using cholesteric liquid crystal layers having different selective light-reflection central wavelengths, attaching a quarter wave (¼ λ) retardation film on top of the liquid crystal film, and adding prism patterns to the opposite side of the liquid crystal film. The reflective polarizing film of the present invention is characterized by that two or more cholesteric liquid crystal layers having different selective reflection wavelength regions are laminated in order from a shorter wavelength to a longer wavelength, and brightness of a liquid crystal display device is maximized owing to an integrated film manufactured by attaching a ¼ λ retardation film onto cholesteric liquid crystal layers and forming prism patterns onto the opposite side.
Abstract:
The pattern printed sheet 1 of the present invention includes a substrate 2 and a non-visible light-reflective transparent pattern 3 printed on a surface of the substrate, wherein an ink for forming the transparent pattern 3 contains a non-visible light-reflective material capable of selectively reflecting a light having a wavelength in a non-visible light range, and the transparent pattern 3 printed on the surface of the substrate 2 has a multilayer structure in section which is repeated at predetermined intervals as observed by a scanning electron microscope, and reflects only a circular polarization component in a predetermined rotation direction relative to an incident light applied thereto. The pattern printed sheet is usable as a coordinate detecting means which is applicable a data input system of a type capable of directly hand-writing input data on an image screen of a display device, and has a reduced weight and a low price, and is readily obtained in the form of a large area sheet and can be mass-produced.