Abstract:
The invention relates to a method for transmitting data wherein a CDMA-coded data signal is transmitted in the form of a data flow consisting of spread data bursts between a transmitter and a receiver (RE, E1, ..., En), whereby hierarchical CDMA codes are used for transmission. In a first step, the spread data is detected according to a mother code c of the receiver code(s). In a second step, the detected code is unspread by means of generator(s) (a, b). In a third step, the detection process is interrupted if the data is sufficiently unspread or the second step with the latest unspread data is repeated until said data is sufficiently unspread.
Abstract:
Embodiments of the present disclosure provide a wireless communications method, user equipment, a base station and a system, and relate to the field of wireless communications. The method includes: acquiring a frequency domain spreading factor, a symbol-level spreading factor and a transmission time interval-level spreading factor; and performing frequency domain spreading, symbol-level spreading and transmission time interval-level spreading on first to-be-sent information respectively according to the acquired spreading factors and sending first spread information; or, despreading, according to the acquired spreading factors, second spread information sent by a base station.
Abstract:
Embodiments of the present invention provide a wireless communications method, user equipment, a base station and a system, and relate to the field of wireless communications. The method includes: acquiring a frequency domain spreading factor, a symbol-level spreading factor and a transmission time interval-level spreading factor; and performing frequency domain spreading, symbol-level spreading and transmission time interval-level spreading on first to-be-sent information respectively according to the acquired spreading factors and sending first spread information; or, despreading, according to the acquired spreading factors, second spread information sent by a base station.
Abstract:
A transmitting apparatus includes an OFDM modulator that generates a first modulation symbol by modulating a first information signal using a first modulation scheme, a signal point of the first modulated information signal being arranged at a first position in an in-phase quadrature-phase plane and a second modulation symbol by modulating a second information signal using the first modulation scheme, and by changing a second position at which a signal point of the modulated second information signal is arranged to a third position in the in-phase quadrature-phase plane, wherein the third position is different from the first position. An OFDM modulation signal includes the first modulation symbol and the second modulation symbol, wherein the OFDM modulation signal comprises a plurality of subcarriers. A transmitter transmits the OFDM modulation signal.
Abstract:
A transmitting apparatus includes an OFDM modulator that generates a first modulation symbol by modulating a first information signal using a first modulation scheme, a signal point of the first modulated information signal being at a first position in an in-phase quadrature-phase plane. A second modulation symbol by modulating a second information signal using the first modulation scheme, and by changing a second position at which a signal point of the modulated second information signal is arranged to a third position in the in-phase quadrature-phase plane, and an OFDM modulation signal including the first modulation symbol and the second modulation symbol, wherein the OFDM modulation signal comprises a plurality of subcarriers.
Abstract:
A plurality of communication signals is received. Each communication signal has an associated code. At least two of the communication signals has a different spreading factor. The associated codes have a scrambling code period. A total system response matrix has blocks. Each block has one dimension of a length M and another dimension of a length based on in part M and the spreading factor of each communication. M is based on the scrambling code period. Data of the received plurality of communication signals is received using the constructed system response matrix.
Abstract:
Techniques and systems for estimating the spreading factor of data in a channel in a spread spectrum radio communication system is described. An illustrative method includes communication between a base station and a mobile station that takes place over a multirate data channel having a corresponding control channel. The control channel is transmitted in parallel with the data channel and is decoded to extract control information in order to decode the data channel. An illustrative method and system for estimating the spreading factor of data in a channel in a spread spectrum radio communication system includes a transmitter and a receiver, wherein the transmitter transmits a data unit at one of a plurality of spreading factors over a data channel and transmits in parallel over a control channel a control unit including information for decoding the data unit.
Abstract:
There is provided a dual mode WPAN transceiver including a dual mode WPAN transmitter and a dual mode WPAN receiver. In the dual mode WPAN transceiver, the dual mode WPAN transmitter includes a low-speed spreading transmission block spreading low bit-rate data corresponding to a low data rate in low data rate mode, and a high-speed encoding transmission block encoding high bit-rate data corresponding to a high data rate in high data rate mode, and the dual mode WPAN receiver includes an A/D block converting analog I and Q signals into digital I and Q signals, a differential block obtaining a phase difference between the digital I and Q signals from the A/D unit and complex signals adjacent thereto to offset phase errors of the digital I and Q signals, a low-speed despreading reception unit despreading the digital I and Q signals differentiated by the differential block to detect low bit-rate data in low data rate mode, and a high-speed decoding reception unit decoding the digital I and Q signals differentiated by the differential block to detect high bit-rate data.
Abstract:
A single, common correlation filter (CF) core is provided in a receiver for recovery of data from received code division multiple access (CDMA) signals. Signals are received over CDMA channels with different data rates, where the received signals include user information such as pilot and data symbols that have been spread according to different despreading rates including tier 1, tier 2 and tier 3 rates, where tier 1 is the smallest despreading rate. The received signal is correlated at the smallest despreading rate in the correlation filter (CF) by time multiplexing delayed versions of the pseudorandom noise (PN) code. The correlated information is then demultiplexed and pilot-aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve tier 2 and tier 3 despreading rates. According to an embodiment, the three strongest multipaths components in terms of the received power are selected in a window or time period for optimal information recovery.
Abstract:
On the basis of a spreading factor obtained by despreading a control channel of received data by a control channel despreading unit, a spreading factor determination unit determines a transmission rate of the received data. User data subjected to despreading processing at a user data despreading unit is demodulated by a demodulator and temporarily stored in a demodulated data memory. The user data read from the demodulated data memory is decoded by a decoder, whereas the result of decoding by the decoder is supplied to a delay measurement unit, where a delay time relative to the above processing, of the user data is detected. A channel resource management unit manages the number of available resources at all times or in a constant cycle on the basis of transmission rates of respective radio channels detected by the spreading factor determination unit and delay processing times of the respective radio channels detected by the delay measurement unit.