Abstract:
Apparatus and methods for selective decoding of received code blocks are disclosed. An example method includes receiving a code block, determining a code block quality indicator for the received code block, and attempting to decode the received code block if the code block quality indicator is greater than or equal to a threshold. If the code block quality indicator is less than the threshold, the received code block is discarded without decoding attempts. The threshold may be a static or dynamic threshold.
Abstract:
In an aspect, a method assists with blind decoding of uplink control signals on a Physical Uplink Shared Channel (PUSCH) and Physical Uplink Control Channel (PUCCH). The method assists in determining the uplink control path in the event a user equipment (UE) misses an uplink grant and blind decoding occurs. It is determined whether an uplink acknowledgement, rank indicator, and/or channel quality indicator are found on a PUSCH. If not, it is determined whether a scheduling request is expected and whether special handling for the scheduling request is indicated. Depending on those determinations, and whether any decoding attempts for uplink signals are successful, either the PUSCH or PUCCH is selected as the uplink control path.
Abstract:
Aspects relate to mitigating interference in a communication network that does not employ a centralized scheduler. A transmission sent on a subset of resources is evaluated to determine a number of communication pairs that have selected that subset of resources on which to transmit. If there are a large number of communication pairs transmitting on that subset, the transmission is ignored by a receiving device. The number of degrees of freedom that contain energy on the subset is evaluated to determine if an expected number of degrees of freedom that should have energy is met or exceeded. If the expected threshold number is met or exceed, the transmission is decoded by the receiving device, else the transmission is not decoded.
Abstract:
An apparatus and method for reducing power consumption of a receiver by performing a Hybrid Automatic Repeat reQuest (HARQ) according to a detected decoding error are provided. The apparatus includes a decoding reliability metric generator for setting a decoding result as a decoding reliability metric, which is a reference value for determining a code block having a decoding error, based on a decoding result, a decoding reliability metric buffer for storing the decoding reliability metric set by the decoding reliability metric generator and a code block controller for, when the decoding error occurs, identifying code blocks having the decoding error by checking the decoding reliability metric and for controlling to decode the identified code blocks.
Abstract:
A decoder for use in a wireless communication device, the decoder comprising a correlator for correlating a received data sequence with a set of codewords such that a correlation value is generated for each correlation, wherein the set of codewords correspond to possible codewords that could be generated from encoding bit sequences having a predetermined number of information bits; a selector for selecting a first correlation value and a second correlation value generated by the correlator and for subtracting the second correlation value from the first correlation value to generate a third value; and a comparator for comparing the third value with a predetermined value to generate a decoding reliability indicator.
Abstract:
To perform erasure detection for an intermittently active transport channel with unknown format, a receiver determines an energy metric and a symbol error rate (SER) for a received block with CRC failure. The receiver computes uncorrelated random variables u and v for the received block based on the energy metric and SER, the estimated means and standard deviations of the energy metric and SER, and a correlation coefficient indicative of the correlation between the energy metric and SER. The receiver then evaluates the uncorrelated random variables u and v based on at least one decision criterion and declares the received block to be an erased block or a DTX block based on the result of the evaluation. The decision criterion may be defined based on a target probability of false alarm and adjusted based on another metric, such as a zero state bit, for the received block.
Abstract:
Apparatus (38), and an associated method, for generating a message summary field (72). The message summary field (72) indicates whether 802.11-formatted data packets are communicated upon a frequency range to which a mobile station (12) operable in an IEEE 802.11 radio communication system (10) is tuned. An indicator (44) indicates whether an 802.11 data packet is detected. And, a reporter (56) generates a measurement summary (68) which includes a measurement summary field (72) populated with a value indicating the determination. Subsequent analysis of the value of the field (72) of the measurement summary (68) is utilized pursuant to dynamic frequency selection operations.
Abstract:
The present invention discloses a method for identifying unusable data blocks (bad frames) during communication in a network. The method comprises the steps of determining (S1) a classifier (CL_1) in a current data block, calculating (S3) a mean (M) of classifiers (CL_1 to CL_N) of a predetermined number (N) of data blocks, calculating (S4) a standard deviation (() of the classifiers (CL_1 to CL_N), calculating (S5) a threshold for identifying bad frames on the basis of the mean (M) and the standard deviation (() of the classifiers (CL_1 to CL_N), and distinguishing (S6) whether the current data block is usable or not on the basis of a comparison of the threshold (TH) and the current classifier (CL_C). The present invention proposes also a device for carrying out this method. By the method and the device, changing conditions of a radio channel can be taken into account quickly.