Abstract:
An enclosure includes a first enclosure and a second enclosure. A deflector deflects a light emitted from a light source. A first optical system leads the light emitted from the light source to the deflector. A second optical system includes at least one optical element, and leads the light deflected by the deflector onto a surface to be scanned. The first enclosure holds the light source, the deflector, and the first optical system, and the second enclosure holds the at least one optical element included in the second optical system.
Abstract:
A lens block according to the present invention includes a lens cylinder; and at least one lens accommodated in the lens cylinder and dividing a space in the lens cylinder into a first space and a second space, wherein the lens cylinder includes at least one hole into which a tool for removing the at least one lens from the lens cylinder is inserted, wherein the at least one lens is pressed into the lens cylinder from either one of the first space and the second space, and the at least one hole is formed on the other of the first space and the second space, and wherein the at least one hole is provided in a position that enables the inserted tool to contact the at least one lens through the at least one hole.
Abstract:
An apparatus for reading an image comprises an original mounting table for mounting an original, a first carriage which has a light source for irradiating light to the original and an optical system for guiding original-image light reflected from the original, and which moves along the original mounting table, a lens unit having a lens into which the original-image light enters and placed immediately under a passage on which the first carriage moves, a CCD assembly for receiving the original-image light passed through the lens and reading an image corresponding to the original-image light, a lens bracket cover having a bracket portion to which the CCD assembly is attached and a cover portion for covering the lens unit, and a lens base having the bracket portion of the lens bracket cover attached thereto, for supporting the lens unit.
Abstract:
The electronic imaging apparatus comprises a first optical element A having a flat surface and a surface with refracting power, chemical substance which enables to change light transmittance by chemical change according to electric quantity, a second optical element having a transparent surface and a flat surface, and an optical system having an optical component arranged so as to sandwich the chemical substance by a surface of the first optical element and a surface of the second optical element. Here the spectrum transmittance at whole range of nullminnullnull520nullnullmax satisfies the following conditions when the whole transmittance of the first optical element, the chemical substance and the second optical element at the wavelength of 520 nm is null520, 0.70
Abstract:
A paper-separating plate is adapted for a paper-separating mechanism having a paper-separating roller. The paper-separating plate placed around a side of the paper-separating roller comprises a main body and a cushion. The main body has a surface and a plurality of grooves and the grooves are positioned on the surface. The cushion is positioned on the surface of the main body and covers the grooves. The cushion positioned over the partial grooves is elastically pressed onto the paper-separating roller. The grooves are linear and the direction of extending the linear grooves is substantially parallel with the axis of the paper-separating roller, the linear grooves neighboring one another or each other. Besides, the cushion is made of flexible material and the main body is made of rigid material.
Abstract:
The present invention has as its object to provide a light source unit in which the relative portion of a detecting device and a condensing device is accurately determined, whereby the detecting device can reliably detect a laser beam, and a scanning optical apparatus using the same, and for this purpose, the present invention provides a scanning optical apparatus having a light source, a holding member for holding the light source, a deflecting device for deflecting light emitted from the light source, a detecting device for detecting the light deflected by the deflecting device, and a condensing lens for condensing the light incident on the detecting device, wherein the holding member positions the detecting device, and holds the condensing lens.
Abstract:
A line scan camera comprises a printed circuit board upon which a charge-coupled device (CCD) is mounted. A lens component is fixed within a lens mount, and the base of the lens mount is adjustably mounted upon an optical bench. Calibration devices adjustably interconnect the lens mount to the printed circuit board and to the optical bench so as to calibrate the positional location of the lens component relative to the charge-coupled device (CCD) and to an object plane past which objects to be scanned and photographed are conveyed. In this manner, the focus distance defined between the lens component and the charge-coupled device (CCD) as well as the focal distance defined between the lens component and the object plane are fixed and do not need any further calibration. The object plane is defined upon the front surface of a sealed housing enclosure and all of the components are disposed within the housing enclosure so as to prevent dust and contaminants from collecting upon the optical components. LED arrays are disposed within the front of the housing so as to illuminate and properly expose the objects conveyed past the object plane. A positive pressure differential is also created within the sealed housing enclosure so as to prevent the ingress of dust and contaminants into the housing enclosure.
Abstract:
A line scan camera comprises a printed circuit board upon which a charge-coupled device (CCD) is mounted. A lens component is fixed within a lens mount, and the base of the lens mount is adjustably mounted upon an optical bench. Calibration devices adjustably interconnect the lens mount to the printed circuit board and to the optical bench so as to calibrate the positional location of the lens component relative to the charge-coupled device (CCD) and to an object plane past which objects to be scanned and photographed are conveyed. In this manner, the focus distance defined between the lens component and the charge-coupled device (CCD) as well as the focal distance defined between the lens component and the object plane are fixed and do not need any further calibration. The object plane is defined upon the front surface of a sealed housing enclosure and all of the components are disposed within the housing enclosure so as to prevent dust and contaminants from collecting upon the optical components. LED arrays are disposed within the front of the housing so as to illuminate and properly expose the objects conveyed past the object plane. A positive pressure differential is also created within the sealed housing enclosure so as to prevent the ingress of dust and contaminants into the housing enclosure.
Abstract:
Disclosed herein is an improved lens focusing and holding arrangement for an imaging system of the type which may include a photosensor array. The lens may be in contact with a reference surface or surfaces formed within the imaging system housing and may be translatable along the surface in directions toward and away from the photosensor array in order to adjust the focus of the imaging system. A lens retention clip may be provided to secure the lens within the imaging system housing and to cause translational movement of the lens along the imaging system reference surface. When focusing the imaging system, the lens retention clip may be in a first operating condition in which the lens retention clip applies a relatively small force tending to hold the lens in contact with the housing reference surface. After the desired focus has been set, the lens retention clip may be placed in a second operating condition in which the lens retention clip applies a relatively high force tending to hold the lens in contact with the housing reference surface, thus locking the lens in place.
Abstract:
밀착형 이미지 센서 유닛은, 원고 조명용의 광원(10)과, 상기 광원(10)으로부터의 광을 원고로 유도하기 위한 막대 형상의 도광체(11)와, 상기 원고로부터의 반사광을 광전 변환 소자에 결상하는 결상 소자(12)와, 상기 광전 변환 소자가 실장된 센서 기판(14)과, 이들을 장착함과 함께 상기 도광체(11)를 장착하기 위한 위치 결정부(200)를 갖는 프레임(15)과, 상기 도광체(11)를 착탈 가능하게 지지하고, 또한 상기 위치 결정부(200)에 착탈 가능하게 장착되는 지지 부재(16)를 구비하고 있다. 접착재를 사용하지 않고, 도광체(11)를 프레임(15)에 장착할 수 있으므로, 도광체(11)의 변형이나 밀착형 이미지 센서 유닛의 휨 등을 방지할 수 있다.