Abstract:
A method and apparatus for optimizing energy efficiency of a pumping system includes at least one pump that controls a fluid level in a reservoir. The method includes a system identification stage and an energy efficiency optimization stage. The system identification stage includes determining pump characteristics for the pump, operating the pump with a range of flow rate conditions, determining a set of data points, and calculating energy efficiency optimization characteristics. The energy efficiency optimization stage includes determining a present static head value, choosing a value for a pump control parameter, and operating the pump on the pump control parameter.
Abstract:
The arrangement comprises a seal (500) sealing a cylindrical rotating part (100) passing through an opening in a support structure in the vessel (10) against a medium (W). The seal (500) comprises a package of annular seal rings (510, 520, 530). Each seal ring (510, 520, 530) comprises a seal part (512, 522, 532) being supported in a corresponding seal support part (511, 521, 531). The seal support part (511) in the first seal ring (510) positioned closest to the medium (W) has the form of a cylinder (511A) provided with an annular flange (511B) at one end of the cylinder (511A). The outer surface of the cylinder (511A) is supported and sealed with an auxiliary seal (610) against the inner circumference of the opening. The annular flange (511B) is supported against the support structure (83) surrounding the opening. There are adjusting means (900) for adjusting the position of the first seal support part (511) in relation to the support structure (83) surrounding the opening in order to relocate the seal (500) in an axial direction in relation to the rotating part (31, 100).
Abstract:
A capacitor fastening for fastening a capacitor to a panel, whereby the capacitor, when mounted in place, is positioned in the panel, fastened at its lower part. The capacitor fastening includes a retainer in the panel at the mounting point of the capacitor for preventing lateral movement of the capacitor in at least one selected direction; a tightening plate arranged above the panel and to be fastened to the panel, which tightening plate has a hole substantially corresponding to the diameter of the capacitor above the mounting point of the panel; and a wedge between the panel and the tightening plate for tightening the retainer of the panel and the edge of the hole in the tightening plate from opposite directions against the capacitor.
Abstract:
A gate drive circuit creates a bipolar voltage to a gate of an IGB power transistor, and compensates for Miller currents of the IGB power transistor. The compensating is performed by a switching element connected in series with a capacitor between the gate (X4) and a supply voltage.
Abstract:
A switch assembly (1) for switching electric circuits comprises a contributory switch (3), a main switch (2), and a flexible element (4). The contributory switch (3) and the main switch (2) are connected electrically in series, the contributory switch (3) and the main switch (4) each comprise at least one movable contact and the flexible element is connected to one movable contact of the contributory switch, a first contact (5a), and one movable contact of the main switch, a second contact (6a).
Abstract:
A method for controlling an electric drive, having an inverter, an electric motor and control means configured in a first operating state of the electric drive to control the electric drive to run in a constant operating point, determine and store a value of an output voltage of the inverter or a value of a flux reference of the inverter, and a value of a switching frequency of the inverter with which a determined input power of the electric drive is lowest. The controller is configured in a second operating state of the electric drive to control the electric drive to use the stored values to run in the operating point.