Abstract:
Improved batteries described herein generally comprise an electrolyte having lithium ions and a cathode comprising submicron metal vanadium oxide particles. In some embodiments, the battery demonstrate an accessible current capacity of a least about 220 mAh/g when pulsed in groups of four constant energy pulses at a current density of 30 mA/cm2 to deliver 50 Joules per pulse. The four pulses of a pulse train are separated by 15 seconds of rest between each pulse, and there are 6 days between pulse groups, upon discharge down to a pulse discharge voltage of 2 V. In further embodiments, the batteries have an average internal electrical resistance of no more than 0.2 Ohms at a current density of at least about 30 mA/cm2. Furthermore, the batteries can have a current capability of at least about 0.4 amps per cubic centimeter battery volume. Due to the improved discharge performance, the batteries can exhibit no significant voltage delay throughout the life of the battery as demonstrated in a three month accelerated discharge test.
Abstract:
Monolithic optical structures include a plurality of layer with each layer having an isolated optical pathway confined within a portion of the layer. The monolithic optical structure can be used as an optical fiber preform. Alternatively or additionally, the monolithic optical structure can include integrated optical circuits within one or more layers of the structure. Monolithic optical structures can be formed by performing multiple passes of a substrate through a flowing particle stream. The deposited particles form an optical material following consolidation. Flexible optical fibers include a plurality of independent light channels extending along the length of the optical fiber. The fibers can be pulled from an appropriate preform.
Abstract:
A collection of silicon oxide nanoparticles have an average diameter from about 5 nm to about 100 nm. The collection of silicon oxide nanoparticles effectively include no particles with a diameter greater than about four times the average diameter. The particles generally have a spherical morphology. Methods for producing the nanoparticles involve laser pyrolysis. The silicon oxide nanoparticles are effective for the production of improved polishing compositions including compositions useful for chemical-mechanical polishing.
Abstract:
Tin oxide nanoparticles were produced with tin in a variety of oxidation states. In particular, nanoparticles of single phase, crystalline SnO2 were produced. Preferred tin oxide nanoparticles have an average diameter from about 5 nm to about 100 nm with an extremely narrow distribution of particle diameters. The tin oxide nanoparticles can be produced in significant quantities using a laser pyrolysis apparatus. Nanoparticles produced by laser pyrolysis can be subjected to further processing to change the properties of the particles without destroying the nanoscale size of the particles. The nanoscale tin oxide particles are useful for the production of transparent electrodes for use in flat panel displays.
Abstract:
Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to LV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
Abstract:
Silicon nanoparticle inks provide a basis for the formation of desirable materials. Specifically, composites have been formed in thin layers comprising silicon nanoparticles embedded in an amorphous silicon matrix, which can be formed at relatively low temperatures. The composite material can be heated to form a nanocrystalline material having crystals that are non-rod shaped. The nanocrystalline material can have desirable electrical conductive properties, and the materials can be formed with a high dopant level. Also, nanocrystalline silicon pellets can be formed from silicon nanoparticles deposited form an ink in which the pellets can be relatively dense although less dense than bulk silicon. The pellets can be formed from the application of pressure and heat to a silicon nanoparticle layer.
Abstract:
Submicron powders of metal silicon nitrides and metal silicon oxynitrides are synthesized using nanoscale particles of one or more precursor materials using a solid state reaction. For example, nanoscale powders of silicon nitride are useful precursor powders for the synthesis of metal silicon nitride and metal silicon oxynitride submicron powders. Due to the use of the nanoscale precursor materials for the synthesis of the submicron phosphor powders, the product phosphors can have very high internal quantum efficiencies. The phosphor powders can comprise a suitable dopant activator, such as a rare earth metal element dopant.
Abstract:
Embodiments of electrodes include a collection of particles having an average diameter less than about 100 nm and have a root mean square surface roughness less than about one micron. Electrodes can be formed with a collection of electroactive nanoparticles having a narrow particle size distribution. Electrodes can be formed having an average thickness less than about 10 microns that include particles having an average diameter less than about 100 nm. Thin electrodes can be used in the formation of thin batteries in which at least one of the electrodes includes nanoscale electroactive particles.
Abstract:
Laser pyrolysis apparatuses can provide for the engineering of product inorganic particles in-flight through the use of jet inlets that introduce a composition, such as an inert gas or a surface modifying composition, at high velocity. Under strong mixing conditions, the inorganic particle flow can be manipulated while also reducing particle agglomeration. These strong mixing apparatuses have been found to be effective at forming high quality crystals with structures that inherently grow relatively slowly through the slowing of the quenching process to maintain the crystal development until a desired high degree of crystallinity is achieved. Also, the surface chemistry of the particles can be manipulated in the flow to engineer desired inorganic particle surface chemistry.
Abstract:
Photovoltaic modules can comprise solar cells having doped domains of opposite polarities along the rear side of the cells. The doped domains can be located within openings through a dielectric passivation layer. In some embodiments, the solar cells are formed form thin silicon foils. Doped domains can be formed by printing inks along the rear surface of the semiconducting sheets. The dopant inks can comprise nanoparticles having the desired dopant. Photovoltaic modules can be formed with a plurality of solar cells having different sized structures to improve module performance. The sized can be determined dynamically based on estimated properties of the semiconductor so that the current outputs of the cells in the module are more similar to each other. The modules can produce higher power relative to modules with similar equal sized cells that do not produce matched currents. Appropriate dynamic processing methods are described that include processing steps that provide adjustments of the processing according to the dynamic adjustments in cell designs.