Abstract:
A rise in temperature of a work (laminating base material) is controlled and the occurrence of thermal deformation is suppressed. There is provided a three-dimensional laminating and shaping apparatus having the following arrangement. That is, the three-dimensional laminating and shaping apparatus includes a material ejector that ejects a material of a three-dimensional laminated and shaped object onto a work on which the three-dimensional laminated and shaped object is shaped. The three-dimensional laminating and shaping apparatus includes a light beam irradiator that irradiates the ejected material with a light beam. Furthermore, the three-dimensional laminating and shaping apparatus includes a jig to which the work is detachably attached. The jig includes a channel supplied with a cooling medium for cooling the work.
Abstract:
This invention effectively prevents charge-up of an unsintered region. A three-dimensional laminating and shaping apparatus includes a linear funnel for recoating the material of a three-dimensional laminated and shaped object onto a shaping surface on which the three-dimensional laminated and shaped object is to be shaped. The three-dimensional laminating and shaping apparatus also includes an electron gun for generating an electron beam. The three-dimensional laminating and shaping apparatus further includes a charge shield for shielding the material recoated on the shaping surface when irradiating the material with the electron beam. In addition, the apparatus includes a vertical driving mechanism for vertically moving the charge shield.
Abstract:
A high-precision three-dimensional laminated and shaped object is shaped based on a captured image. A three-dimensional laminating and shaping apparatus includes a material ejector that ejects a material of a three-dimensional laminated and shaped object onto a shaping table, a light beam irradiator that irradiates the ejected material with a light beam, an image capturer that captures a molten pool formed by irradiating the ejected material with the light beam, a scanning direction determiner that determines a scanning direction of the light beam with respect to a shaped object based on a change in a position of the shaping table, a detector that detects the molten pool based on an image captured by the image capturer and the scanning direction, and a shaping controller that controls at least one of an output of the light beam and a scanning speed of the light beam based on the detected molten pool.
Abstract:
An optical processing nozzle that homogeneously supplies a fluid to a processing surface in optical processing is provided. The optical processing nozzle includes a beam path that is arranged so that a beam can pass through the beam path toward a processing surface in order to perform processing using a beam guided from a light source, and a channel structure that is arranged around the beam path and is configured to eject a fluid toward the processing surface. The channel structure includes an inflow port through which the fluid flows, at least two passage holes through which the fluid flowing from the inflow port passes, a channel that guides the fluid from the inflow port to the passage holes, and an ejection port from which the fluid having passed through the at least two passage holes is ejected toward the processing surface. The at least two passage holes are arranged to be spatially symmetrical with respect to the inflow port, and the ejection port is arranged to be spatially symmetrical with respect to the optical axis of a beam coming out from the beam path.
Abstract:
A line inkjet head cleaning apparatus for effectively cleaning a long line inkjet head includes a wiper fixer extending in a longitudinal direction of a line inkjet head as a cleaning target and having a predetermined width in a vertical direction, a cleaning wiper being fixed to an upper end thereof, a cleaning solution tank having a predetermined volume accommodating the wiper fixer and having an opening in an upper surface, and a driver that vertically moves the wiper fixer between a cleaning solution in the cleaning solution tank and the line inkjet head as a cleaning target positioned above the opening.
Title translation:LASERHEIZUNGSREGELUNGSMECHANISMUS,LASERHEIZUNGSREGELUNGSVERFAHREN,LASERHEIZUNGSREGELUNGSPROGRAMM UND DREIDIMENSIONALE FORMVORRICHTUNG
Abstract:
A laser heating control mechanism according to this invention is a mechanism that performs proper adjustment of preheating or postheating by a simple operation in three-dimensional shaping. The laser heating control mechanism is a laser heating control mechanism for preheating or postheating a heating target object. The laser heating control mechanism includes an optical fiber that transmits a laser beam and radiates the laser beam from an opening end face, a collimation optical system that fucuses the laser beam radiated from the opening end face onto the heating target object, and an irradiation range adjustment mechanism that adjusts the distance between the opening end face and the collimation optical system along the irradiation axis of the laser beam so as to irradiate the heating target object with the laser beam at a predetermined beam diameter.
Abstract:
A machining apparatus that need not exchange a processing nozzle when changing a shaping condition, and increases the use efficiency of a material is disclosed. The processing nozzle that performs processing by ejecting a processing material toward a molten pool formed on a process surface by an energy line includes a cylindrical inner housing that incorporates a path through which the energy line passes, and ejects the energy line from one end, a cylindrical outer housing that incorporates the inner housing, and has an inner surface tapered in the ejection direction of the energy line ejected from the inner housing, and a slide mechanism that changes, along the energy line, the relative position of the outer housing with respect to the inner housing. The gap between the outer surface of the inner housing and the inner surface of the outer housing forms an ejection port for the processing material, and the size of the ejection port changes in accordance with a change of the relative position by the slide mechanism.
Abstract:
An additive manufacturing development method includes predicting a defect that occurs in a product based on a combination of a plurality of design data and a plurality of manufacturing conditions, collecting defect detection data for defect detection by monitoring the product during manufacturing in accordance with the combination of the plurality of design data and the plurality of manufacturing conditions, and generating a process map in which the plurality of manufacturing conditions are plotted using the predicted defect and the collected defect detection data. The method further includes collecting defect repair data for defect repair by monitoring the product during manufacturing and repairing a defect detected from the product, and storing the defect and the defect repair data in association with each other using the defect repair data and a repair result.
Abstract:
An information processing apparatus for controlling additive manufacturing of a powder bed method includes an acquirer that acquires roughness data indicating a roughness of a manufacturing surface after melting, and defect determiner that divides the manufacturing surface into small regions each having a predetermined size, and compares the roughness data with a predetermined threshold for each small region, thereby determining whether a defect exists in the small region. If an unmolten region is included in the small region, the defect determiner replaces data of the manufacturing surface in the unmolten region using data of the manufacturing surface in the small region, and determines whether a defect exists in the small region including the unmolten region. Also, the manufacturing defect detection method further includes a defect repair instructor that instructs remelting of a region that is determined by the defect determiner to have a defect.