Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoset composition such as polybutadiene rubber. The inner and outer core layers can have different hardness gradients. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Golf ball having CoR of at least 0.810, specific gravity SGB of less than 1.00 g/cc, and initial velocity of at least 250 ft/s and comprising a first layer L1, a second layer L2 surrounding L1, and a third layer L3 surrounding L2. L1 is formed from at least one highly neutralized polymer and has first specific gravity SG1; L2 is formed from at least one partially neutralized polymer and has second specific gravity SG2; and L3 is formed from at least one of a thermoset or thermoplastic composition and has third specific gravity SG3. At least two of SG1, SG2, and SG3 is less than 1.13 g/cc. SG1 may be less than 1.13 g/cc, or less than 1.0 g/cc. The thermoset or thermoplastic composition may comprise polyurethane(s), polyurea(s), polyurethane(s)/polyurea(s) hybrids, and/or ionomers such as at least partially neutralized polymers and/or HNPs.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoplastic composition such as ethylene acid copolymer ionomer. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-piece golf balls containing a dual-layered core and dual-layered cover are provided. The core structure includes a small, heavy inner core (center) having a relatively high specific gravity, and a surrounding outer core layer. The core layers may have different hardness gradients. The center of the core comprises a metal material such as copper, steel, brass, tungsten, titanium, aluminum, and combinations and alloys thereof preferably dispersed in a thermoplastic polymeric matrix. The outer core layer is preferably formed from a thermoset composition such as polybutadiene. The multi-layered cores and covers have selective specific gravity relationships between the different layers. This helps provide the ball with good flight distance and spin control. The resulting balls have good resiliency and other playing performance properties.
Abstract:
Multi-piece golf balls containing a dual-layered core are provided. The ball further includes single or multi-layered covers. The core structure includes a small, heavy inner core (center) having a relatively high specific gravity, and a surrounding outer core layer. The core layers may have different hardness gradients. The center of the core comprises a metal material such as copper, steel, brass, tungsten, titanium, aluminum, and combinations and alloys thereof preferably dispersed in a thermoplastic polymeric matrix. The outer core layer is preferably formed from a thermoset composition such as polybutadiene. These multi-layered core constructions with metal-containing centers have selective specific gravity relationships between the different layers. This helps provide the ball with good flight distance and spin control. The resulting balls have good resiliency and other playing performance properties.
Abstract:
Golf ball having at least three layers comprising an ionomeric and/or HNP composition, wherein for each two adjacent layers, a relationship is established between a ratio of the volumes of the two adjacent layers and a ratio of the percent neutralizations of those two layers such that the volumes and % neutralizations of all layers are interrelated and interdependent to produce unique and desirable playing characteristics. In one embodiment, each of T layers, wherein T≧3, has a different volume “V” and comprises an ionomeric/HNP composition having a different % neutralization “N”; and wherein each of n inner layers of the T layers (n
Abstract:
Multi-layer golf balls having a hard, high compression center, a relatively soft intermediate layer, and a stiff outer cover layer, are provided. The outer surface hardness of the intermediate layer is less than that of both the center and the outer cover layer.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoset composition such as polybutadiene rubber. The inner and outer core layers can have different hardness gradients. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layer golf balls having a hard, high compression center, a relatively soft intermediate layer, and a stiff outer cover layer, are provided. The outer surface hardness of the intermediate layer is less than that of both the center and the outer cover layer.