Abstract:
Technology is provided for an integrated eye tracking and display system for a see-through, near-eye, mixed reality display device. Image data and IR illumination for eye tracking are optically coupled into a respective see-through, planar waveguide positioned to be seen through by each eye in a respective display optical system of the display device. The respective planar waveguide comprises one or more wavelength selective filters positioned to be co-axial with an optical axis of the respective display optical system. The wavelength selective filters direct IR and visible illumination out of the planar waveguide in the direction of the respective eye and direct IR reflections, including reflections from the eye, into the planar waveguide. The reflections are optically coupled out of the waveguide to an IR sensor which generates eye tracking data based on the reflections.
Abstract:
In embodiments of an extendable connecting link, a first link section attaches in a first housing part of a device and a second link section attaches in a second housing part of the device. The first and second link sections interlock and slide-engage relative to each other. An interconnection channel routes an electrical interconnection between the first housing part and the second housing part of the device, where the interconnection channel is formed when the first and second link sections are slide-engaged. The first and second link sections also slide relative to each other to increase or decrease a length of the extendable connecting link.
Abstract:
A user input device including a ring-shaped scroll wheel for use with a computing device is provided. The user input device includes a housing and a scroll wheel assembly coupled to the housing. The scroll wheel assembly includes a scroll wheel having a ring-shaped body and a scroll wheel support structure. The body of the scroll wheel may include a surface including an outer circumferential surface and an inner circumferential surface that bounds a hollow interior. The scroll wheel may be configured to extend through an opening of the housing. The scroll wheel support structure may include a frame and a plurality of supports mounted to the frame and contacting the surface of the scroll wheel. The plurality of supports may be configured to rotatably secure the scroll wheel to the scroll wheel support structure.
Abstract:
An input device with an optical scanner for use in capturing biometric images such as fingerprints. The user places the biometric image on the platen window. Movement of the platen window causes a scan head to move and allows the scan head to scan the biometric image and capture a series of scan lines. The series of scan lines are combined together to form an image representative of the biometric image.
Abstract:
A computer input device includes a light guide that illuminates a target area for imaging so as to permit tracking relative motion of a surface. The light guide also directs light to a window that is externally visible to a user of the device when the device rests upon a supporting surface. In one form, the light guide includes an entrance surface that receives light from a light source, together with two separated channels. The light guide directs a portion of the light incident upon the entrance surface through a first channel to the target area. The light guide further directs a portion of the incident light through a second channel so as to illuminate the window.
Abstract:
A computer-pointing device may comprise a first illumination apparatus and a second illumination apparatus. The first illumination apparatus is operatively associated with the computer-pointing device and generates light when the computer-pointing device is in a first operating mode. The second illumination apparatus is operatively associated with the computer-pointing device and generates light when the computer-pointing device is in a second operating mode.
Abstract:
An electronic device and method of manufacturing the electronic device are disclosed herein. The electronic device comprises a substrate with at least a first and a second linear optical component mounted thereto. Each of the linear optical components includes a photodetecting portion and an interface portion, wherein the photodetecting portions are electrically connected to the interface portions. The photodetecting portions of the linear optical components are aligned along a first axis. The interface portion of the at least one first linear optical component is offset from the first axis in a first direction. The interface portion of the at least one second linear optical component is offset from the first axis in a second direction, which is different from the first direction. This arrangement of optical components reduces the size of the electronic device, which in turn, reduces the size of any device that incorporates the electronic device.
Abstract:
An electronically controlled anti-dive suspension apparatus for a two-wheeled vehicle includes a suspension system, a sensor, an electronics module, and an actuator. The sensor mounted to the vehicle senses deceleration of the vehicle due to a braking action and produces an input representative thereof. The electronics module mounted to the vehicle and connected to the sensor receives and processes the input from the sensor and produces an output corresponding to a desired predetermined response to the deceleration of the vehicle. The actuator mounted to the vehicle and coupled to the suspension system receives the output from the electronics module and in response thereto causes the suspension system to reduce its amount of contraction and thereby prevent any resulting dive of the front end of the vehicle downward toward the ground.
Abstract:
Expandable scanner apparatus may comprise a main body with a detector mounted therein. A contact head mounted to the main body can be moved toward and away from the main body between a retracted position and an extended position. An optical system operatively associated with the main body and the contact head focuses on the detector image light from an object being scanned when the contact head is in the extended position.
Abstract:
An electronically controlled bicycle suspension apparatus includes a suspension system, a sensor such as a biaxial accelerometer, an electronics module, at least one actuator and at least one battery for powering the sensor, electronics module and actuator. The suspension system mounted to and between first and second parts of a bicycle movable relative to one another in response to a shock applied to the bicycle, includes a cylinder having telescoping members defining an interior cavity and respectively connected to the first and second relative movable bicycle parts and movable toward and away from one another between predetermined limits, an extendable and contractible spring disposed within the interior cavity being biased to force the telescoping members away from one another, a fluid contained in the interior cavity and a partition fixed across the interior cavity inside of a telescoping members to divide the interior cavity into separate chambers. The partition defines at least one orifice having a predetermined size for controlling a rate of flow of the fluid between the chambers so as to control contraction of the spring and thereby control movement of the telescoping members toward one another. The actuator is coupled to the cylinder and movable relative thereto to change the size of the orifice in the partition of the suspension system. The sensor is mounted to either one the first and second relative movable parts of the bicycle.