Abstract:
A sorbent pouch for use in sorbent dialysis. The sorbent pouch allows for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouch.
Abstract:
An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The sorbent cartridge is configured to allow an amount of urease to be added to the sorbent cartridge. A urease solution can be injected into the sorbent cartridge to replenish the urease containing module, or solid urease can be added to the sorbent cartridge. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
Abstract:
Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include passing solutions containing combinations of acids, bases and salts through a module containing a rechargeable sorbent material such as zirconium phosphate in order to replace ions bound to the zirconium phosphate with hydrogen and sodium ions. The method allows for a customizable zirconium phosphate, with control over the ratios of sodium to hydrogen on the recharged zirconium phosphate.
Abstract:
Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include passing solutions containing combinations of acids, bases and salts through a module containing a rechargeable sorbent material such as zirconium phosphate in order to replace ions bound to the zirconium phosphate with hydrogen and sodium ions. The method allows for a customizable zirconium phosphate, with control over the ratios of sodium to hydrogen on the recharged zirconium phosphate.
Abstract:
A reserve zirconium phosphate module for continuing dialysis in the event the capacity of the original zirconium phosphate module is exceeded. The sorbent cartridge can have a sensor for detecting when the capacity of the zirconium phosphate material has been exceeded, and a valve assembly for diverting the flow of spent dialysate into the reserve module when needed. Any of the modules of the sorbent cartridge can be reusable and the sorbent materials therein recharged.
Abstract:
An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis using urease pouches. The sorbent cartridge is configured to allow insertion of a urease pouch or injection of a urease solution into the sorbent cartridge containing a urease pouch. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
Abstract:
A customizable modular dialysate regeneration assembly with connectable sorbent packaging systems. The dialysate regeneration assembly can be customized based on patient parameters or dialysis session parameters. A processor can be included that can determine the correct amount of each sorbent material necessary for a given patient and a given dialysis session.
Abstract:
A stacked sorbent assembly for use in sorbent dialysis. The stacked sorbent assembly contains two or more interchangeable sorbent pouches that allow for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouches. Any of the pouches in the sorbent cartridge can be reused and/or recharged.