Abstract:
The invention relates to a combination filter arrangement (1) having a hollow cylindrical filter element (2) for filtering a first fluid medium, having a temperature compensation medium separated by means of cylindrical separating wall (5), as a second fluid medium in an area between the separating wall (5) and an outer housing (9) of the combination filter arrangement (1). The first fluid medium is made of a urea-water mixture, or comprises a urea-water additive having a higher freezing temperature than the first and the second fluid medium, and at least the separating wall (5) has an elasticity such that the volume expansion by freezing the urea-water additive can be absorbed.
Abstract:
The invention relates to a method for both dewatering and drying solid-liquid mixtures and to a device formed as a filter press dryer for application of the method. The filter press dryer is fitted with a defined number of metal heating chamber filter plates (1) and/or membrane heating chamber filter plates (2) arranged next to one another and parallel to one another. The method comprises the following simplified steps: a) supplying the suspension, b) draining off the filtrate while at the same time holding back the solid fractions as a filter cake, c) heating up the filter cake, d) squeezing the filter cake formed during dewatering, e) drying the filter cake by evacuating the vapour space (4) and the pore space in the filter cake, f) filling the vapour space (4) and the pore space in the filter cake with air or inert gas of up to 1 bar positive pressure, whereby a break in the drying is initiated and the filter cake heats up again, g) repetition of steps e) and f) until the intended degree of drying is reached, h) switching off the heating circuit and ending the membrane pressing and g) removal of the dried filter cake. A surprising increase in the drying rate is achieved in this way in comparison with the solutions known from the prior art.
Abstract:
Said installation comprises a liquid circulation pipe (13), having an upstream portion (21), a downstream portion (23) and a filtering member (37), inserted between the upstream portion (21) and the downstream portion (23), at least one channel (51) being provided in said filtering member. The channel (51) is at least partially defined by a porous wall (57). Said pipe (13) comprises a double vacuum thermal insulation envelope (14), containing an insulating material, in a part of which the filtering member (37) is secured. One of said portions (21) opens out facing an end of said channel (51). The other of said portions (23) opens out facing at least one area (59) of the porous wall (57). Said invention applies to the production of high flow rate sterile cryogenic fluids.
Abstract:
An encapsulated filter cartridge assembly is disclosed which is adapted and configured for reception within an elongated cartridge housing of a filtration system. The filter cartridge assembly includes an elongated filtration element, a connector head positioned adjacent an upper end portion of the filtration element, an outer shell extending axially from the connector head and encapsulating the filtration element, and an expansion joint integrally formed in the outer shell to facilitate expansion of the outer shell within the elongated cartridge housing.
Abstract:
The disclosure describes a fluid container (100) comprising a fluid vessel (101) which includes a generally cylindrical and expandable shell (103) and a supprt structure (102) which includes a generally cylindrical and rigid casing that is coaxially disposed about the shell (103) of the fluid vessel. The shell (103) has first and second end portions (106,107), and the casing (115) has first and second end portions (116,117) cooperatively arranged with the first and second end portions (106,107) of the shell (103). The fluid vessel (101) further includes first and second end caps (104,105) sealed to the first and second end portions (106,107) of the shell (103), respectively. At least one end cap has an opening (113) which allows the fluid to flow into or out of the shell (103). Further, at least the first end portion of the shell (103) has a continuously decreasing outside diameter along the axis of the shell (103), and the first end portion of the casing (115) has a correspondingly continuously decreasing inside diameter. With a filter element disposed within the shell (103), the container (100) may be used as a filter assembly.
Abstract:
Ein Filterelement (3) zum Filtern eines Fluids, insbesondere einer Harnstofflösung, mit einer Endscheibe (4), welche eine Öffnung (22) aufweist, und einem Filtermedium (24), welches die Öffnung (22) verschließt und ein Strömen des Fluids zwischen einer Reinseite (28) und einer Rohseite (27) des Filterelements (3) erlaubt.
Abstract:
Eine Filtervorrichtung mit mindestens einem von einem abzureinigenden Fluid in einer vorgebbaren Fluidrichtung und mit vorgebbarem Fluidbetriebsdruck durchströmbaren Filterelement (1), wobei der am jeweiligen Filterelement (1) herrschende Fluiddruck das jeweilige Filterelement (1) schädigende Druckspitzen oder generelle Druckerhöhungen aufweisen kann, die mittels einer auf das jeweilige Filterelement (1) direkt einwirkenden Ausgleichseinrichtung (17, 19) reduzierbar und/oder glättbar sind, die an zumindest einer Endkappe (11) des betreffenden Filterelements (1) derart nachgiebig ausgebildet ist, dass entsprechend einer Druckspitze oder Druckerhöhung das vom Fluid durchströmte Volumen zumindest im Bereich der jeweiligen Ausgleichseinrichtung änderbar, insbesondere vergrößerbar ist, ist dadurch gekennzeichnet, dass die Ausgleichseinrichtung (17, 19) eine Membran (17) aufweist, die an der betreffenden Endkappe (11) eine Öffnung (15) überspannt, die zu dem von Filtermaterial (3) umgebenen, inneren, an die Endkappe (11) angrenzenden Filterhohlraum (7) führt und über die die Membran (1 7) mit dem möglicherweise Druckspitzen oder Druckerhöhungen aufweisenden Fluiddruck beaufschlagbar ist, und dass die Membran (17) in unbelastetem Zustand die Form eines Troges besitzt, dessen Öffnungsrand (21 ) den Filterhohlraum (7) umgibt und an der Innenseite der Endkappe (11) festgelegt ist.
Abstract:
HWL-Filter (1) umfassend ein Gehäuse (2), einen Deckel (3) und ein HWL-Filterelement (4), wobei eine Membran (8) ein Ausgleichsvolumen (10) von einem Filtrationsvolumen (11) abtrennt und die Membran (8) zwischen Deckel (3) und Gehäuse (2) dichtet.