Abstract:
A discharge electrode using carbon fibers, nanofibers and/or nanotubes to generate the corona discharge. The invention contemplates conductive fiber, such as carbon strands with or without a polymer matrix to form a composite, and a supporting configuration in which the strand is extended along or wrapped helically around a supporting rod that extends along the length of the electrode. A mechanical bias is applied to each strand to maintain tension on the strand. Preferably this includes coil springs extending between bushings mounted on the rod and moveable hemispherical supports slidably mounted on the rod that seat against the strand.
Abstract:
Methods and apparatus for cleaning contaminant byproducts off of ionizing wire electrodes in ionizing blowers are disclosed. Disclosed apparatus include a housing with a gas-flow channel, an stationary ionizing wire, and a rotatable frame with supports for resiliently supporting the stationary ionizing wire within the channel. The ionizing wire produces charge carriers and has a surface that develops a layer of contaminant byproducts when an ionizing signal is applied thereto. The frame is rotatably mounted such that the supports clean the layer of contaminant byproducts off of the surface of the ionizing wire when the frame is rotated, by physical and/or by electrical means. Disclosed methods include providing an ionizing signal to the ionizing wire to thereby produce charge carriers and rotating the frame relative to the housing to thereby clean contaminant byproducts off of the ionizing wire.
Abstract:
Apparatus to capture aerosols, fluid jetting apparatus, and aerosol diverters are disclosed. An example aerosol capture apparatus includes a corona wire to generate ions, and a reference plate positioned below the corona wire and above a substrate on which a fluid is to be deposited, the reference plate to provide a reference potential to direct the ions toward the reference plate to force aerosol particles associated with the fluid toward the reference plate.
Abstract:
Disclosed is a system for filtering airborne particles from an occupied space. The system permits the removal of airborne particles by manipulating both the charge and the size of the particles, thus enabling the capture of particles that most other typical filtration systems leave behind. More specifically, the system captures small airborne particles through the use of a series of electric fields, forcing them to be trapped in a series of filters or collide to form larger particles, whereby their movement and capture are subsequently governed primarily by airflow. The system controls particle behavior by utilizing specific electromagnetic fields to collide particles, capture particles, and deactivate live pathogens that get captured.
Abstract:
An electrostatic precipitation air cleaner to reduce ozone output is provided. The electrostatic precipitation air cleaner includes a housing with an air inlet and outlet. Located in the housing are an air mover for moving a stream of air along an airflow path between the inlet and the outlet, an ion emitter electrode positioned in the airflow path downstream of the inlet for ionizing particulates entrained in the stream of air, a collector electrode having an inlet downstream of the ion emitter electrode, and an intermediate element intermediate the ion emitter electrode and the collector electrode. The collector electrode is comprised of a plurality of collector plates spaced apart in a direction transverse to the airflow path. The plates are electrically biased to create and maintain an electric field in the space therebetween to precipitate ionized particulates entrained in the stream of air onto a confronting surfaces of the plates.
Abstract:
An electrostatic precipitator cell containing a collection assembly, a plurality of collection assembly ground plates disposed in the collection assembly, a plurality of banks disposed in the collection assembly, wherein each bank containing a collection assembly charge plate and a voltage isolator is described. Electrically isolating portions of an electrostatic precipitator cell results in reduced arcing and overall increases in cleaning efficiency. As air cleaner utilizing the electrostatic precipitator with isolated banks is also described.
Abstract:
An air cleaner including a corona wire assembly, a power supply electrically connected to the corona wire assembly, a fan to draw air through the air cleaner, a fan speed control, and a controller to sense the fan speed and control the power supply, such that an amplitude of a current provided by the power supply to the corona wire assembly is proportional to the fan speed is described. By varying the corona wire assembly current proportionally with the fan speed, the ozone output is minimized at all speeds. So as fan speed decreases, the current supplied to a corona wire assembly decreases, thereby reducing the ozone generated by the air cleaner.
Abstract:
The lifetime of aerosol monitoring, concentration and collection equipment is extended by acoustic cleaning of accreted particle deposits from internal surfaces where fouling occurs by application of acoustic energy to the particle accretion surface, optionally in combination with a liquid wash or sampling volume. In one application, acoustic cleaning or sampling of particle deposits for analysis is triggered by a signal indicating changes in gas flow associated with particle loading. In another application, electro-acoustic transducers may be used to prevent particle buildup without interruption of particle monitoring.
Abstract:
An electric precipitator prevents dielectric breakdown by ensuring the dielectric distance among a plurality of electrodes. The electric precipitator includes a charging section for charging dust particles in air, and a collecting section for collecting the dust particles charged by the charging section. The collecting section includes a high voltage electrode having a conductive layer coated with a dielectric layer, and a low voltage electrode having at least one protrusion that maintains a gap between the high voltage electrode and the low voltage electrode. The conductive layer includes at least one cutting part formed in an area corresponding to the protrusion.
Abstract:
A system for coating objects, comprising a coating booth and an electrostatically operating deposition unit. A feeding device, by which deposition liquid can be fed to the upper region of each deposition surface, is assigned to each deposition electrode of the deposition unit. The feeding device has a feed channel which can be filled with deposition liquid and which in the lower region thereof is formed by two spring plates. Two slide plates are also seated against the opposite deposition surfaces of the deposition electrode and can be moved back and forth between a position in which the lower edges of said slide plates are located above the lower edges of the spring plates and a position in which the lower edges of said slide plates are located below the lower edges of the spring plates.