Abstract:
Provided is a vibrating device including: a vibrator including multiple electromechanical energy converting elements; a power supply for applying an alternating voltage to the multiple electromechanical energy converting elements; and a control circuit for controlling the alternating voltage to be applied by the power supply, the vibrating device generating, by the control circuit, a first standing wave and a second standing wave in the vibrator with a predetermined time phase difference, the first standing wave and the second standing wave having multiple nodal lines aligned in the same direction and being different in terms of an order, in which the vibrator includes at least one of the multiple electromechanical energy converting elements disposed in the same direction as the multiple nodal lines, and also includes at least another one of the multiple electromechanical energy converting elements disposed in a direction in which the multiple nodal lines are aligned.
Abstract:
This invention refers to a sonic and/or ultrasonic generator for emission in air with a power capacity and certain radiation characteristics which permit the necessary acoustic levels (>170 dB ref. 2.10−4 μbar) to be obtained in a way that is safe and controlled for the mechanical breakage of high consistency bubbles constituting industrial foams.
Abstract:
The invention relates to devices that produce displacements and/or forces (defined as actuators), when a magnetic field source(s) is (are) placed in such a way that the resulting magnetic field is of suitable strength and orientation in relation to the actuating element made from a Magneto-Mechanical Adaptive (MMA) material, so as to produce the desired displacement of the MMA element; or to devices that dampen mechanical vibrations by absorbing the vibration energy into an MMA element and/or by converting the vibration energy into electric power in the device and/or senses displacement velocity or acceleration. The electric energy can be dissipated to heat or led out from the device. In the latter case, the device works as a power generator. The principle of using the devices as sensors is also described. The MMA material here is defined as a material whose dimensions change when a magnetic field or stress is applied to it, based on twin boundary or austenite-martensite phase boundary motion or magnetostriction.
Abstract:
This invention deals with a portable terminal that reduces extraneous tones in a portable terminal in which is mounted an electromagnetic induction actuator that produces voice signals, a buzzer signal or a low frequency vibration. By short-circuiting the terminal fittings of the electromagnetic induction actuator or by connecting them electrically to amplifiers or to a signal generator that produces a constant voltage signal or a constant-frequency signal, the extraneous tone produced by vibration of the mechanical vibration system of the actuator is reduced.
Abstract:
In a resonating assembly, a beam having a pickup thereon is positioned proximate to a magnet which passes across the pick up at a predetermined frequency. The passage of the magnet across the pick up establishes an alternating magnetic field that in turn causes the beam and pick up to vibrate. A blade is mounted on the beam and vibrates therewith so that when the blade is brought into engagement with a layer of sheet type work material the vibratory amplitude of the blade causes the blade to cut through the material as it is moved in engagement therewith.
Abstract:
This invention deals with a portable terminal that reduces extraneous tones in a portable terminal in which is mounted an electromagnetic induction actuator that produces voice signals, a buzzer signal or a low frequency vibration. By short-circuiting the terminal fittings of the electromagnetic induction actuator or by connecting them electrically to amplifiers or to a signal generator that produces a constant voltage signal or a constant-frequency signal, the extraneous tone produced by vibration of the mechanical vibration system of the actuator is reduced.
Abstract:
A digital circuit for driving an audio transducer that provides consistent tonal quality over a range of volume levels, without requiring a variable gain analog amplifier. A fixed amplitude ringer tone is multiplied, or amplitude modulated, by a higher frequency digital pulse train to produce a transducer driving signal. The timbre of the transducer driving signal is similar to that of the fixed amplitude ringer tone, but the volume of the sound produced by the transducer varies with the mark-space ratio of the pulse train.
Abstract:
A screening machine that includes a screen having a periphery and a central porous region is provided. A motion amplifier is substantially rigidly attached in direct contact with the periphery of the screen and not in direct contact with the central porous region. A transducer is substantially rigidly attached to the motion amplifier, wherein the transducer imparts a vibratory motion to the screen via the motion amplifier.
Abstract:
An electro-mechanical-audio converter and an electro-mechanical-audio converting device using the same employed in mobile terminals such as mobile phones for generating paging vibration which realizes stable vibration function. The electro-mechanical-audio converter includes a housing (1a), movable part (2), forming a magnetic circuit, mounted on an opening of the housing (1a) through a suspension (3); and a detection coil (11) disposed near the movable part (2) for generating excitation voltage by vibration of the movable part (2). Strong vibration of the movable part (2) during resonance is detected by the detection coil (11) as an excitation voltage, and fed back. Accordingly, the electro-mechanical-audio converter and electro-mechanical-audio converting device using the same having an extremely stable vibration function, even when resonance frequency changes due to environmental changes such as ambient temperature, is made feasible.
Abstract:
The remote inspection of seam welds in reactor vessels is improved through the utilization of a pulser network which is inductively isolated from the transducer circuit to which it applies an excitation signal. Through the utilization of a step-up transformer, the pulser network may perform in conjunction with linear d.c. power supplies of lower voltage rating. The inductive coupling between circuits also serves to provide for the positive commutation off of switching devices such as SCRs employed for excitation signal triggering. To avoid ground path induced noise, a different ground path is employed for the pulser network as for the transducer circuit. The transducer circuit ground path is that associated with a manipulator and, for example, a reactor vessel itself. Thus, the transducers employed may come in contact with the surface of the vessel being inspected. In similar fashion, an inductive coupling is provided between the transducer circuit and a pre-amplfying receiver circuit. This same inductive coupling may be employed to enhance the impedance match between the FET-based amplification stage and the impedance defining components of the transducer circuit.