Abstract:
The present invention discloses an assembly and process for creating a co-extruded pipe which includes the steps of extruding a first elongated component exhibiting an open interior. Additional process steps include co-extruding at least one, and typically a pair, of additional elongated components each having an arcuate or lobe cross sectional shape or profile. The additional components are bonded to exterior locations of the first component to establish a pair of additional open interiors between the components and prior to cooling and hardening.
Abstract:
An object of the present invention is to make it possible to provide a cord, in particular, a cord for reinforcing a rubber article in which rubber permeation properties are improved by coating filaments as constituents of the cord with rubber in a reliable and stable manner. The cord of the present invention is produced by, when the metal filament is guided to an extruder and extruded together with rubber from a mouthpiece of the extruder so that the metal filament is coated with the rubber, juxtaposing plural metal filaments in the mouthpiece and extruding the metal filaments together with rubber.
Abstract:
A wired pipe includes a tubular pipe body having a wall. The wall including an inner surface, a flow channel formed by the inner surface, an outer surface, and at least one channel integrally formed within a thickness of the wall and between the inner and outer surfaces of the wall. Also included is a method of forming a wired pipe.
Abstract:
The polymeric pipes reinforced with a metal casing are used for transporting oil and gas, acids, alkali products, drinking water and industrial water, and also in the transportation of aggressive and neutral pulps. A metal-containing polymeric reinforced pipe includes a welded metal casing and a polymeric matrix having an amorphous-phase-based molecular structure. The metal-containing polymeric reinforced pipe is produced by extrusion moulding with simultaneous feeding of a polymer melt and the reinforcing metal casing into the mould cavity, followed by intensive cooling of the internal and external surfaces of the pipe being moulded. The invention increases the quality and endurance limit in the radial direction of the metal-containing polymeric reinforced pipe, productivity of the process for manufacturing the pipe, and also the strength and technological effectiveness of a pipeline constructed from the pipes produced.
Abstract:
The flexible tubular moulded body (10) comprises an unprofiled or profiled straight or bent shaped and a circumferential wall (11) provided with a corrugated profile (12), which is formed from a strength support insert embedded in a thermoplastic material comprising cord surfaces running in the longitudinal direction of the moulded body as pressure support elements and fixing threads running transversely to the threads and holding these in position.
Abstract:
The invention relates to a method for roll-bending a profile which comprises at least one cross-sectional region which is formed from a plastics material which is shaped by extrusion. A first and a second bending roller set are provided, each including bending rollers which are arranged in such a way that a passage, which enables guiding of the profile, is formed between the bending rollers of each of the bending roller sets. The profile is bent about a first bending axis and about a second bending axis which is non-parallel thereto, the translations and rotations of the second bending roller set being brought about simultaneously at least at times and/or mutually offset in time in a predetermined sequence.
Abstract:
A hollow fiber membrane is made by covering a tubular supporting structure with a membrane dope and converting the membrane dope into a solid porous membrane wall. Optionally, a textile reinforcing structure in the form of a circular knit may be added around the supporting structure before it is covered in dope. The reinforcing structure thereby becomes embedded in the membrane wall. The supporting structure may be soluble in a non-solvent of the membrane wall, for example water, and may be removed from the membrane. Alternatively, the supporting structure may be porous. A porous supporting structure may be made by a non-woven textile process, a sintering process within an extrusion machine, or by extruding a polymer mixed with a second component. The second component may be a soluble solid or liquid, a super-critical gas, or a second polymer that does not react with the first polymer.
Abstract:
Provided is a pellet of an ethylene polymer having a kneading torque at 160° C. of 2 to 15 Nm, wherein the pellet has a specific surface area of 1,800 to 3,000 mm2/g.
Abstract:
A method and apparatus for extrusion of an article is provided. A die assembly can apply flows of thermoplastic material to an array of reinforcing cables to form a composite extrusion. A slider fabric can be bonded to one side of the composite extrusion. After exiting the die assembly, the slider fabric can act to support the extrudate as it passes along an elongate mandrel, which can cause the base of the slider fabric to change shape from a flat profile to the final internal profile of the article. The extruded article can then be cooled to solidify the material. The die can include cooling for the slider fabric and means for promoting penetration of the thermoplastic into reinforcing cables.
Abstract:
Disclosed is a polyester polymer composition comprising at least one polyethylene terephthalate polyester in an amount ranging from 94.0 weight percent to 99.5 weight percent and at least one additive in an amount ranging from 0.5 weight percent to 6 weight percent, each based on the total weight of the polyester composition. The at least one additive comprises a diamide molecule. The composition of the present invention is useful in producing shaped articles such as, for example, sheeting, films, tubes, bottles, preforms, and profiles. These articles can exhibit improved gas barrier properties. The process for making the polymer composition and the shaped articles is also disclosed.