Abstract:
A lithographic printing plate precursor comprises an image forming layer containing at least one polymer compound having a fluoroaliphatic group on the side chain, wherein the fluoroaliphatic group is derived from a fluoroaliphatic compound produced by a telomerization or oligomerization method.
Abstract:
According to the present invention there is provided an imaging element for making a lithographic printing plate, including on a first side of a flexible support a surface capable of being differentiated in oleophilic and oleophobic areas upon imaging and on a second side opposite to the first side a layer or a package of layers, characterized in that the layer or package of layers on the backside has a ratio of the squared value of the gravimetric water absorption (WA) in g/m2 over the mean roughness in &mgr;m greater than 20.
Abstract translation:根据本发明,提供了一种用于制造平版印刷版的成像元件,该成像元件在柔性载体的第一侧具有在成像时能够在亲油性和疏油性区域中分化的表面,并且在与第一侧相反的第二侧上 一层或多层,其特征在于背面层或层包层的重量吸收光(WA)的平方值(g / m 2)之间的平均粗糙度大于20。
Abstract:
The invention relates to a recording material for the production of an offset printing plate, having a substrate on whose front a photosensitive image layer is present and on whose back a layer of an organic polymeric material having a glass transition temperature Tg of 45° C. or more is present. The photosensitive image layer, or any top layer present thereon, has a pigment layer formed thereon.
Abstract:
Disclosed is an image forming method comprising the steps of imagewise heating or imagewise exposing to a laser with a wavelength of 700 to 1200 nm an image forming material; and continuously developing the exposed or heated material with a developer, while the developer is replenished with a developer replenisher, wherein the image forming material comprises a support and provided thereon, a radiation sensitive layer containing a dye having an absorption band in the wavelength region of from 700 nm to 1200 nm, an acid generating compound capable of generating an acid on irradiation of heat or actinic light, and an acid decomposable compound having a bond capable of being decomposed by an acid, the acid decomposable compound being decomposed by an acid to produce a diol compound containing an ethylene glycol component or a propylene glycol component.
Abstract:
The present invention provides a heat mode recording material comprising on a side of a support having an oleophilic surface (i) a recording layer containing a light-to-heat converting substance capable of converting radiation into heat and (ii) an oleophobic surface layer, wherein said oleophobic surface layer and said recording layer may be the same layer and on another side of the support a backing layer, characterized in that the maximum roughness depth R.sub.t of the surface layer is at least 0.65 .mu.m and/or the maximum roughness depth of the outer back layer is at least 1.20 .mu.m.
Abstract:
Provided are a planographic printing plate precursor, a laminate thereof, and a method of producing a planographic printing plate precursor capable of satisfying all purposes for eliminating interleaving paper used for preventing scraping and peeling, preventing adhesion, imparting a plate-separating property for preventing multiple-plate feeding, and preventing scratches. The planographic printing plate precursor which includes a polymer layer on a surface of a belt-like support 12 includes a back coat layer 70 having an arithmetic average surface roughness Ra of 0.5 μm or greater due to a surface roughness structure in which thin film portions 60 and thick film portions 62 are continuously formed on a rear surface of the belt-like support 12.
Abstract:
Provided is a printing plate precursor including: a support; a layer which contains a polymer on one side of the support; and a layer which contains a metal oxide obtained by hydrolyzing and polycondensing an organic metal compound or an inorganic metal compound and fine particles on the other side of the support, in which an average particle diameter of the fine particles is 0.3 μm or greater and is greater than the thickness of the layer containing a metal oxide and fine particles, and in a case where the printing plate precursors are laminated, dislocation in stacking precursors, adhesion between precursors, and scratches can be all prevented even without using interleaving paper.
Abstract:
A method of making a planographic printing plate includes exposing, to infrared light, a planographic printing plate precursor including a recording layer provided on a substrate, and developing the precursor using an aqueous alkaline solution. The recording layer comprises a copolymer containing a structural unit derived from (meth)acrylonitrile and at structural unit derived from styrene, a water-insoluble and alkali-soluble resin, and an infrared absorbing agent, the solubility of the recording layer in the aqueous alkaline solution being increased by the exposure. The aqueous alkaline solution has a pH of 8.5 to 10.8 and contains a betaine-based amphoteric surfactant and an ammonium salt represented by Formula (I): R1, R2, R3, and R4 each independently represent an alkyl or aryl group; the total number of carbon atoms in R1, R2, R3, and R4 is not more than 20; and X− represents a counter anion.
Abstract:
A laminated lithographic printing plate comprising an aluminum layer having a first side and a second side, an aluminum oxide layer coating the first side aluminum layer, optionally a second aluminum oxide layer coating the second side of the aluminum layer, an image forming layer coating the first aluminum oxide layer, an adhesive layer adhering to the second side of the aluminum layer or to said second aluminum oxide layer when second aluminum oxide layer is present, and a base layer coating the adhesive layer is provided.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly(vinyl acetal) resin, and maleimide resin A.