Abstract:
To provide a lithographic printing plate precursor capable of obtaining a plenty of sheets of good printed matters with practical energy dosage, which is excellent in on-press developing property and press life, and capable of reducing pollution of fountain solution, and provide a lithographic printing method. The lithographic printing plate precursor comprises a support having provided thereon an image-recording layer, which lithographic printing plate precursor is mounted on a printing press and imagewise exposed, or mounted on the printing press after imagewise exposure, and then developed by feeding printing ink and/or a fountain solution, wherein at least a part of the unexposed part of the image-recording layer is not dissolved in the printing ink, the fountain solution or both of them, and removed by falling out of film, and the invention provides a lithographic printing method using the same.
Abstract:
The invention provides a planographic printing plate precursor that is writable by laser exposure and is composed of a support, a photosensitive recording layer formed on the support, and a backcoat layer containing an epoxy resin, the backcoat layer being formed on the side of the support opposite to the photosensitive recording layer side; and a stack of the planographic printing plate precursors. According to the invention, scratches on the photosensitive recording side of the planographic printing plate precursor can be prevented when brought into contact with another planographic printing plate precursor in the stack without interleaving slip sheets, and productivity in a plate making process can be improved.
Abstract:
A method of deactivating and on-press developing an exposed lithographic printing plate is disclosed. The plate comprises on a substrate a photosensitive layer developable with ink and/or fountain solution and capable of hardening upon exposure to a radiation. The plate is exposed with the radiation, deactivated, and then on-press developed with ink and/or fountain solution. The deactivation of the exposed plate allows the handling of the plate under regular office light or any other light without causing the hardening of the non-exposed areas of the photosensitive layer.
Abstract:
A planographic printing plate precursor comprises a substrate having disposed thereon a hydrophilic layer which includes hydrophilic graft chains and a crosslinked structure formed through hydrolytic polycondensation of an alkoxide of an element selected from Si, Ti, Zr and Al. An aluminum substrate for a planographic printing plate includes a hydrophilic surface which is formed by a hydrophilic polymer including a functional group that chemically bonds to the aluminum substrate directly or is chemically bindable to the aluminum substrate via structural component having a crosslinking structure. A surface-hydrophilic member comprises a substrate having disposed thereon a hydrophilic layer, wherein the hydrophilic layer includes hydrophilic graft chains and a crosslinked structure formed through hydrolytic polycondensation of an alkoxide of an element selected from Si, Ti, Zr and Al.
Abstract:
The invention provides: an image recording material comprising a support having provided thereon in this order an image recording layer containing a binder polymer (A), a compound having a polymerizable unsaturated group (B), and a polymerization initiator (C), and a layer containing a hydrophilic polymer and a compound having within the molecule thereof an acid group and a partial structure functioning as a base.
Abstract:
A lithographic printing process which comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and a removable image-forming layer containing an infrared absorbing agent having the absorption maximum within an infrared region and a dye precursor having substantially no absorption within a visible region to change the dye precursor to a visible dye having an absorption within a visible region within the exposed area, and to make the image-forming layer irremovable within the exposed area; removing the image-forming layer within the unexposed area of the lithographic plate mounted on a cylinder of a printing press; and then printing an image with the lithographic plate mounted on the cylinder of the printing press. The other processes are also disclosed.
Abstract:
A polymerizable negative planographic printing plate precursor including a hydrophilic support, and a polymerizable negative photosensitive layer and a protective layer containing polyvinylalcohol, organic resin fine particles (preferably, having an absolute specific gravity of 0.90 to 1.25 and an average particle diameter of 2.0 to 15 μm) and mica particles (preferably, at an organic resin fine particle/mica particle ratio in the range of 3:1 to 2:3) as a top layer formed on the hydrophilic support in this order.
Abstract:
A method for preparing a lithographic printing plate comprising: exposing a lithographic printing plate precursor comprising: a support having a hydrophilic surface; a photosensitive layer containing a phthalocyanine pigment covered with a polymer having a group represented by the formula (I) or (II) as defined herein in its side chain and a hydrophobic binder polymer having an acid value of 0.3 meq/g or less; and a protective layer provided in this order; and removing the protective layer and an unexposed area of the photosensitive layer in a presence of a developer having pH of from 2 to 10 in an automatic processor equipped with a rubbing member.
Abstract:
The present invention provides a lithographic printing plate precursor and a lithographic printing method using the lithographic printing plate precursor, which is capable of an image recording by infrared laser scanning and an on-press development and excellent in fine line reproducibility and press life while maintaining good on-press developing properties, the lithographic printing plate precursor comprising: a support; and an image recording layer capable of being removed by a printing ink and/or a fountain solution, in which the image recording layer comprises an infrared absorber and a graft polymer having a specific graft chain.
Abstract:
There is devised a novel acryl resin in which an unsaturated group introduced in an alkali soluble resin is placed at a longer distance from the resin skeleton of the alkali soluble resin, the mobility of the unsaturated group is promoted and the number of the unsaturated double bonds is increased; therefore it allows crosslinking reaction to occur easily and a functional resin portion which imparts a specific function, in particular, function of suppressing polymerization inhibition due to oxygen by introduction of an active methylene group is provided at a resin portion existing between the acryl resin skeleton and the unsaturated double bond, and a photosensitive resin composition containing thereof is to be provided. A photosensitive resin composition comprising an alkali soluble resin, an ethylenically unsaturated compound, a near infrared absorbing dye, a compound containing a halomethyl group and a compound containing an organoboron anion, wherein the alkali soluble resin comprises an acryl resin having one or more of pendant groups in which both terminals of a diol compound have been blocked with isophorone diisocyanates and then (meth)acryloyl has been added, and, an image forming material comprising a substrate, and a photosensitive layer formed by the photosensitive resin composition on the substrate, as well as an image forming method.