Abstract:
A method for automatic braking of a vehicle in order to avoid collision with road users is contemplated. The method may be used in avoiding or mitigating collisions with users in adjacent lanes. The method may include monitoring adjacent lanes of a road for detecting the relative approach of road users in said adjacent lanes to said vehicle, and providing a signal indicative thereof, detecting a left or right hand turn of the vehicle and providing a signal indicative thereof, calculating, in response to said signals, if a collision with an approaching road user is imminent, and providing a signal indicative thereof, and activating, in response to the signal that a collision with the approaching road user is imminent, the brakes of the vehicle.
Abstract:
A safety device for motor vehicles includes an impact detection system and a triggering device for triggering a braking operation as a function of a signal of the impact detection system characterized in that the triggering device is designed for the purpose of triggering the braking operation when the impact detection system indicates the beginning of an impact.
Abstract:
A method for stabilizing a vehicle in a transverse direction, in which: for a first braking force distribution in which each vehicle wheel is braked using the maximum braking force transmittable to the road surface in the current driving situation, the yawing moment acting on the vehicle is ascertained; for at least a second braking force distribution that differs from the first braking force distribution in that at least one wheel is not braked using the maximum braking force, the yawing moment acting on the vehicle is ascertained; a setpoint yawing moment is ascertained; and from at least the first and second braking force distributions, the braking force distribution whose associated yawing moment comes closest to the setpoint yawing moment is set at the vehicle.
Abstract:
The invention relates to a driver assistance system for a motor vehicle, comprising a speed detection device (22) for detecting driving data in the form of a speed (vk) of the motor vehicle (10), a preceding vehicle detection device (14), which comprises as a first component at least one video camera (18) and as a second component at least one distance sensor (20), for detecting driving data in the form of a distance (A) from a preceding vehicle (16) driving in front of the motor vehicle (10), a preceding vehicle speed determination device for determining driving data in the form of a preceding vehicle speed (vVf) of the preceding vehicle (16), and an electric control unit (28), which is equipped to trigger an autonomous deceleration of the motor vehicle (10) with the presence of predetermined brake trigger driving data and to terminate the autonomous deceleration of the motor vehicle (10) with the presence of predetermined brake abortion driving data. According to the invention, the electric control unit (28) is equipped to carry out a method comprising the following steps: redundant detection of preceding vehicle driving data (A, vVf) of the preceding vehicle (15), and non-redundant detection of the preceding vehicle driving data (A, vVf) if a redundant detection of the preceding vehicle driving data (A, vVf) is not possible, comparing the non-redundantly detected preceding vehicle driving data to preceding vehicle driving data redundantly detected within a predetermined time (t), and using the non-redundantly detected preceding vehicle driving data in order to carry out step (d) if the non-redundantly detected preceding vehicle driving data correspond to the redundantly detected preceding vehicle driving data.
Abstract:
A motor vehicle multi-stage integrated brake assist (MSIBA) system, which can provide at least one brake assist level of a plurality of predetermined levels of brake assist (i.e., deceleration) less than or greater than the required amount of braking (i.e., deceleration) calculated by the MSIBA to avoid a collision with an obstacle at the time the driver initiates braking, but allows the driver to increase or remove the provided predetermined level of brake assist.
Abstract:
In a method for deactivating a safety function in a motor vehicle after being activated, the safety function may be deactivated by the driver only after a dead time has elapsed.
Abstract:
A method for plausibilizing sensor signals of a vehicle system, the sensor signals being monitored with regard to compliance with one plausibility criterion or a plurality of plausibility criteria with the aid of a plausibilization algorithm. The function of the vehicle system is able to be maintained even in critical driving situations, in particular following a collision, if the driving status of the vehicle is monitored with regard to a collision and the plausibilization algorithm is modified if a collision was detected.
Abstract:
A device and a method for transmitting an activation decision for an actuator system from a first to at least one second control unit is provided, the second control unit activating the actuator system as a function of at least two messages from the first control unit.
Abstract:
A vehicle brake system includes a brake mechanism for individually braking wheels, and a brake controller for controlling the brake mechanism against an oblique collision from behind or an offset collision with a host vehicle. The controller includes a collision predictor, a collision direction detector, and a colliding object speed detector. In accordance with a prediction signal transmitted from the collision predictor, a detection signal transmitted from the collision direction detector and a detection signal transmitted from the colliding object speed detector, the controller controls the operation of the brake mechanism to allocate braking forces to the respective wheels so as to prevent the turning of the host vehicle in a collision.
Abstract:
A system for use with a motor vehicle that minimizes injury after a loss of control event. The motor vehicle has at least one front wheel and at least one rear wheel and an engine. The system includes a control which detects a loss of control event and automatically actuates a brake system and/or a steering system and/or commands an engine controller to reduce power output of an engine.