Abstract:
The present invention is directed to a method for reducing monomer loss during curing of a high internal phase emulsion. The method has the steps of: forming a water-in-oil emulsion, curing the monomer component in the emulsion in a saturated steam environment, and forming a saturated polymeric foam material. The water-in-oil emulsion has an aqueous phase and an oil phase comprising a monomer component.
Abstract:
The invention relates to novel foams obtained by highly concentrated internal phase emulsion polymerization, which are formed from a crosslinked, exclusively hydrocarbon, polymer based on styrenic monomers and which exhibit a density at least equal to 6 mg/cm3 and at most equal to 20 mg/cm3 and cells with a mean diameter at most equal to 20 microns. It also relates to the process for the manufacture of these foams.
Abstract translation:本发明涉及通过高度浓缩的内相乳液聚合获得的新型泡沫材料,其由基于苯乙烯类单体的交联的,独特的烃类聚合物形成,并且其表现出至少等于6mg / cm 3 并且最多等于20mg / cm 3,平均直径最大等于20微米的细胞。 它还涉及制造这些泡沫的方法。
Abstract:
A method for dehydrating a porous cross-linked polymer conveniently to a low final water content is provided. A porous cross-linked polymer sheet is produced by a method which comprises causing a porous cross-linked polymer obtained by forming and polymerizing a water-in-oil type higher internal phase emulsion to be dehydrated by the use of non-woven fabric rolls furnished with an aspiration mechanism. Properly in this case, the porous cross-linked polymer is subjected to preliminary squeezing. In accordance with the present invention, a porous cross-linked polymer abounding in a water absorbing property to be dehydrated to a low final water content with a small number of rolls.
Abstract:
A method for producing a porous cross-linked polymer sheet capable of slicing quickly is provided. This method comprises a step for obtaining a porous cross-linked polymer by forming and polymerizing an HIPE, a step for dehydrating the porous cross-linked polymer, and a step for subsequently slicing the dehydrated porous cross-linked polymer. According to this invention, by performing the step of dehydration prior to the conventional step of slicing, it is made possible to prevent the porous cross-linked polymer from adhering to the blade and the guides provided for a slicer, and allow the slicing to be attained quickly. By removing the salt from the polymer, it is further made possible to prevent a production device from gathering rust and the porous cross-linked polymer from permitting adhesion of rust thereto.
Abstract:
The present invention comprises compositions and methods of making high internal phase emulsion foam (HIPE) and inverse high internal phase emulsion foam (I-HIPE) using super critical fluids. Such foams may be used in a wide variety of articles such as absorbent articles.
Abstract:
This application relates to flexible, microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses. This application particularly relates to methods particularly suitable for continuously curing high internal phase emulsions to form such foams.
Abstract:
Composition and methods of using melanin, or melanin-promoting compounds, for inhibiting angiogenesis to treat angiogenesis-dependent diseases, such as macular degeneration and cancer.
Abstract:
An object of this invention is to provide a method for the production of a porous material by polymerizing a water-in-oil type high internal phase emulsion in a briefer time than a conventional technique without impairing the stability of the emulsion. The object of this invention can be accomplished by a method for the production of a porous material comprising a step of polymerizing a water-in-oil type high internal phase emulsion containing a polymerization initiator, wherein the polymerization initiator is a redox type initiator combining a water-soluble oxidizing agent and a reducing agent, the reducing agent is preparatorily added to form the emulsion, and thereafter the water-soluble oxidizing agent is added to the emulsion to polymerize the added emulsion.
Abstract:
A superabsorbent foam material is made by a water-in-oil high internal phase emulsion polymerization comprising the steps of (a) dissolving an organic solvent-soluble surfactant in a water-insoluble monomer to form an organic phase; (b) blending the-organic phase with an aqueous phase using high shear mixing to form an emulsion, said aqueous phase comprising a water-soluble polymer, a cross-linking agent, and water; (c) polymerizing the water-insoluble monomer in the organic phase; (d) cross-linking the water-soluble polymer in the aqueous phase; and (e) final curing and drying the resulting foam.
Abstract:
A superabsorbent foam material is made by a water-in-oil high internal phase emulsion polymerization comprising the steps of (a) dissolving an organic solvent-soluble surfactant in a water-insoluble monomer to form an organic phase; (b) blending the-organic phase with an aqueous phase using high shear mixing to form an emulsion, said aqueous phase comprising a water-soluble polymer, a cross-linking agent, and water; (c) polymerizing the water-insoluble monomer in the organic phase; (d) cross-linking the water-soluble polymer in the aqueous phase; and (e) final curing and drying the resulting foam.