Abstract:
Solid carboniferous fuels contain varying quantities of moisture, mercury, chlorine, nitrogen, sulfur, heavy metals and other materials that attain vapor pressure at elevated temperatures. The cost effective removal of these degrading and sometimes hazardous materials is important to the further use of the fuel for combustion as a solid, liquid, or gas. The solid fuel is cut, shredded, ground or sieved to appropriate size, and heated in a chamber that can exclude oxygen and air thus preventing ignition. The unwanted materials are driven in the gaseous state and extracted for disposal. The solid fuel cleaned of pollutants exits the chamber and is cooled below ignition temperature prior to contact with oxygen. The solid fuel thus purified is more appropriate for combustion, liquefaction or gasification due to the reduced costs in use as a fuel or in the post combustion clean up.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
A process is provided using non-food or limited-feed agricultural residue and energy crops for energy production, such as ethanol or electricity generation. The agricultural plant material is harvested and baled. The bales are transported to the processing site for storage or immediate processing. The bale strings are first removed, and then the broken bales are shredded. The shredded plant material is then ground to a small size. The ground material is then pelletized to produce densified pellets of the agricultural plant material. The pellets are cooled and then stored or transported to an end user.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
A classifier capable of stably providing particles by further reducing the mixing ratio of coarse particles, a vertical crusher having the classifier, and a coal fired boiler apparatus having the vertical crusher. The classifier comprises a rotating fin (21) classifying solid particles by a centrifugal force, a cylindrical downward flow forming member (13) installed on the outer peripheral side of the rotating fin (21), a recovery cone (11) disposed under the rotating fin (21) and the downward flow forming member (13), and a housing (41). A contraction flow area (16) is formed between the housing (41) and the recovery cone (11), and a two-phase flow (52) formed of the mixture of the solid particles and gases blown up through the contraction flow area (16) is collided with the downward flow forming member (13) on the upper side of the housing (41) to form it in a downward flow. Then, that flow is led to the rotating fin side, classified into the fine particles and the coarse particles, and the fine particles are carried together with an airstream, passed through the rotating fin (21), and removed. A circulating swirl flow development suppressing part (30) is installed at the upper part of the contraction flow area (16) and on the outer periphery of the downward flow forming member (13).
Abstract:
An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.
Abstract:
A dynamic classifier for a coal pulverizer has an improved drive mechanism which is mounted on top of a pulverizer and concentric with the classifier axis of rotation and is directly controllable. The drive mechanism is a variable-speed DC or AC electric motor having a hollow motor shaft. The motor can produce classifier rotor rotational speeds of between 50 and 200 rpm. The classifier rotor is supported from the hollow motor shaft. A coal feed pipe passes through the hollow motor shaft and classifier rotor shaft into the pulverizer.
Abstract:
Apparatus for grinding material which enters the grinder in a wet condition and is subject to drying heat at the grinder to leave moisture in the ground material directed for independently material separation so the propelling initially hot gases looses its temperature level before returning to the grinder. A portion of the returning gases carrying ground fine with moisture therein is directed into a bag house to recover the fines and a portion of the drying heat is directed into the bag house to independently maintain a temperature level above the dew point temperature level in the bag house to prevent moisture from plugging the bag house. The apparatus provides two circulation loops, each with its independent moisture control, and a common transport for collecting product from each loop.
Abstract:
The apparatus for processing a composite supply of material having limestone, culm or gob and pond fines for grinding reduction with coal, has the ability to discard the low BTU value materials and materials hard to grind, and comprising grinding means having a grinding chamber in which the composite supply of material is processed to initiate the first removal of fine material so that the remainder is left to go through a grinding step with emphasis on discarding the low BTU value and hard to grind material while the remainder is subject to reduction to a fineness that responds to a supply of air acting to carry the fines to a cyclone separator to recover the fines for use in a combustion step and reuse the air to circulate through the grinding chamber and pick up heat of combustion to cause moisture reduction in some of the material to improve the efficiency in the grinding process, and to limit the presence of sulfur in the stack gas from the combustion step.
Abstract:
A mill inert apparatus for preventing the explosion of a mill inert apparatus which comprises a drain separator and a drain trap for separating and removing drain contained in an inert vapor, and a drain discharge route for discharging the separated drain. Furthermore, a method for preventing the explosion of a coal pulverizer which comprises the step of introducing an inert medium into the coal pulverizer in specific operation stages so that an oxygen concentration in the coal pulverizer may be in the range of from 13% to 15%.