Abstract:
Ein Meßkopf zur Bestimmung von optischen Remissionseigenschaften der bei einem Buntdruck mitgedruckten Farbmeßfelder verfügt über eine Beleuchtungsoptik mit zwei Mangin-Spiegeln (11, 14) und einem fluchtend zu den Mangin-Spiegeln (11, 14) in einer zentralen Öffnung (13) angeordneten Aplanaten (25). Das von einer Lichtquelle (3) ausgesandte und der Meßfläche (2) remittierte Licht gelangt in einen Glasstab (41) und wird über eine Meßoptik (40, 45 - 52) in einen Lichtwellenleiter (4) eingespeist, über den das remittierte Licht in ein Spektrometer zur Spektralanalyse eingespeist wird.
Abstract:
Dispositif (1) utilisable pour détecter la richesse des gaz de combustion d'un moteur à explosion comprenant, un premier système optique (2) muni d'une source de rayonnement (4), un deuxième système optique (24) muni d'un capteur de rayonnement (27), d'une enceinte (18) aménagée dans un conduit (23) et située sur un chemin optique entre les deux systèmes optiques (2, 24), enceinte (18) pouvant être traversée par des gaz d'échappement du moteur, le capteur (27) mesurant alors l'absorption du rayonnement de la source (4) par un composé chimique contenu par les gaz, les systèmes optiques (4, 24) étant munis d'un guide de rayonnement (13, 20) sensiblement cylindrique et dont une face (15, 21) est en contact avec les gaz d'échappement de température élevée permettant ainsi le nettoyage de ladite face (15, 21) par pyrolise. Application : Industrie automobile.
Abstract:
PROBLEM TO BE SOLVED: To solve such a problem that it is difficult to quickly and highly accurately detect a defect and calculate the size of the detect without applying thermal damage to a sample in a conventional technique.SOLUTION: In a defect inspection method, illuminating light of which the illumination intensity distribution is substantially uniform in one direction on the surface of a sample is applied to the surface of the sample, a plurality of scattered light components outgoing to a plurality of mutually different directions out of scattered light from the surface of the sample are detected, a plurality of scattered light detection signals corresponding to the scattered light components are obtained, at least one of the plurality of scattered light detection signals is processed to determine the existence of a defect, at least one of the plurality of scattered light detection signals corresponding to respective positions determined as defective by the processing is processed to determine the size of the defect, and a position and a defect size on the surface of the sample for each position determined as defective are displayed.
Abstract:
A fuel injector for a gas turbine combustor is disclosed which includes a feed arm having a flange for mounting the injector within the combustor and a fuel nozzle (26) depending from the feed arm for injecting fuel into the combustor for combustion. An optical sensor array is operatively associated with the fuel nozzle for observing combustor flame characteristics. The optical sensor array includes a plurality of sapphire rods (194) positioned to be close enough to the combustor flame to oxidize soot deposits thereon.
Abstract:
PROBLEM TO BE SOLVED: To provide a fuel injector monitoring characteristics of flame in a combustor by keeping a vision range wide without using a cooling means for sensor protection. SOLUTION: The fuel injector for a gas turbine engine is released. The fuel injector 20 is provided with a supply arm 22 including a flange 24 installing the fuel injector in the combustor and a fuel nozzle 26 suspended from the supply arm 22 and injecting fuel into the combustor. An optical sensor 30 for monitoring characteristics of flame in the combustor is functionally connected to the fuel nozzle 26. The optical sensor 30 is provided with a plurality of sapphire rod positioned sufficiently close to the flame in the combustor to oxidize adhering soot. COPYRIGHT: (C)2007,JPO&INPIT