Abstract:
Liquid crystal modulator optical devices and more specifically shutters and smart windows are presented. The liquid crystal modulator devices are characterized by a reduced polymer content which is eliminated from the material composition of the liquid crystal layer and characterized by non-uniform electrode structures in the liquid crystal structure configured to generate spatially non-uniform electric fields and therefore non-uniform molecular reorientation of liquid crystal molecules. This arrangement advantageously makes light scattering electrically controllable.
Abstract:
Disclosed is an optical waveguide element wherein a plurality of Mach-Zehnder waveguides to be used for DQPSK modulation and the like are integrated on a thin substrate and the on/off extinction ratio is improved. The optical waveguide element has the thin board, which is formed of a material having electrooptical effects and has a thickness of 20 µm or less, and an optical waveguide formed on the front surface or the rear surface of the thin board. The optical waveguide has the plurality of Mach-Zehnder waveguide sections, and multiplexes optical waves outputted from two or more Mach-Zehnder waveguide sections. In the multiplexing section in each Mach-Zehnder waveguide section (MZA), a triply branched waveguide, which is composed of a waveguide for output (c1) and two waveguides for radiation (b1, b2) disposed to sandwich the waveguide for output, is formed. High-order mode light absorption regions (d1, d2) are formed between the waveguide for output and the waveguides for radiation in the triply branched waveguide.
Abstract:
The invention relates to a device for generating electromagnetic radiation, comprising a pump light source (1), which emits a substantially monochromatic excitation radiation (5) at a first wavelength, and an optical waveguide (2), which generates frequency-converted radiation (6, 7) at a second and a third wavelength from the excitation radiation (5) of the pump light source (1) by means of degenerate four-wave mixing. The problem of the invention is producing a device which ensures an improved pulse shape and conversion efficiency. According to the invention a filter element (3) is provided, which attenuates the radiation (6, 7) at the second or third wavelength.
Abstract:
Disclosed is an optical waveguide element wherein a plurality of Mach-Zehnder waveguides to be used for DQPSK modulation and the like are integrated on a thin substrate and the on/off extinction ratio is improved. The optical waveguide element has the thin board, which is formed of a material having electrooptical effects and has a thickness of 20 µm or less, and an optical waveguide formed on the front surface or the rear surface of the thin board. The optical waveguide has the plurality of Mach-Zehnder waveguide sections, and multiplexes optical waves outputted from two or more Mach-Zehnder waveguide sections. In the multiplexing section in each Mach-Zehnder waveguide section (MZA), a triply branched waveguide, which is composed of a waveguide for output (c1) and two waveguides for radiation (b1, b2) disposed to sandwich the waveguide for output, is formed. High-order mode light absorption regions (d1, d2) are formed between the waveguide for output and the waveguides for radiation in the triply branched waveguide.
Abstract:
A display device may include a first substrate, a second substrate, reflective plates and a transparent electrode. The first substrate and the second substrate may be facing each other. The reflective plates may be on a surface of the first substrate facing the second substrate. The transparent electrode may be disposed on a surface of the second substrate facing the first substrate. Color filters and a polymer-dispersed liquid crystal (PDLC) layer may further be included in the display device. The color filters may be on the reflective plates, and the PDLC may be between the first substrate and the second substrate. The PDLC layer may include a polymer and liquid crystals dispersed in the polymer.
Abstract:
A liquid crystal display apparatus includes a backlight unit, a secnd polarization layer, a liquid crystal layer disposed between the backlight unit and the second polarization layer, a first polarization layer disposed between the backlight unit and the liquid crystal layer. In an embodiment, a surface of the first polarization layer facing the backlight unit includes a reflective surface and a surface of the first polarization layer facing the backlight unit includes an absorbent surface. In another embodiment, the first polarization layer includes grids, which include a metal, and absorbing members, which include dielectric materials. In another embodiment, the first polarization layer includes grids, each of which includes a first component including a dielectric material and a second component including a metal.
Abstract:
An optical device characterized by comprising a light transmissive plate-shaped light guide (154) for guiding light incident from an end surface, an optical control layer (150) provided on a lower surface of said plate-shaped light guide through a transparent electrode (151) provided as a first electrode, a reflection film (152) provided on a lower surface of said optical control layer, a second electrode (153) provided on a lower surface of said reflection film, and a substrate (155) provided on a lower surface of said second electrode, wherein said optical control layer changes in scattering degree or diffraction efficiency by an electric field applied by said first electrode and said second electrode.
Abstract:
A display having polymer dispersed liquid crystals, which display comprises a transparent substrate; a layer comprising polymer-dispersed cholesteric liquid crystal disposed over the substrate, which layer has more than one stable optical state in the absence of an electrical field. The display further comprises a first transparent conductor disposed between the state changing layer and the transparent support, a second conductor on the other side of the state changing layer so that when a field is applied between the first and second conductors, the liquid crystals change state. It has been found advantageous to have a non-conductive, non-field spreading dark layer of sub-micron pigments in a binder for providing an improved light absorbing function, which dark layer is disposed between the layer of polymer-dispersed cholesteric liquid crystal and the second conductor.