Abstract:
The method and system are disclosed for automatic feedback control of integrated optical quadrature modulator for generation of optical quaternary phase-shift-keyed signal in coherent optical communications. The method comprises the steps of detecting at least a part of an output optical signal from the QPSK modulator, extracting of a particular portion of the output signal in frequency domain, and processing the signal in frequency domain to optimize the transmission of an optical link. The system and method of optical communications in fiber or free space are disclosed that implement the quadrature data modulator with automatic feedback control.
Abstract:
An apparatus includes an optical splitter, an optical intensity combiner, first and second Mach-Zehnder interferometers, and first and second drive electrodes. The first Mach-Zehnder interferometer connects a first optical output of the optical intensity splitter to a first optical input of the optical intensity combiner. The second Mach-Zehnder interferometer connects a second optical output of the optical intensity splitter to a second optical input of the optical intensity combiner. The first drive electrode is located between and connected to a pair of semiconductor junctions along first internal optical arms of the Mach-Zehnder interferometers. The second drive electrode is located between and connected to a pair of semiconductor junctions along second internal optical arms of the Mach-Zehnder interferometers.
Abstract:
An optical modulator comprises a Z-cut lithium niobate substrate (21) on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides (23, 25) lying beneath a buffer layer of dielectric material (27). First and second ground electrodes (29, 33) and a hot electrode (31) are disposed on the buffer layer (27), the first and second ground electrodes (29, 33) being spaced either side of the hot electrode (31), the hot electrode (31) and the first ground electrode (29) being proximate to at least apart of the respective waveguides (25, 23). The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained. When the spacing (G1) between the first ground and hot electrodes (29, 31) is smaller than the spacing (G2) between the second ground and hot electrodes (33, 31), and preferably the hot and first ground electrodes have a width not exceeding 15 μm, the modulator is capable of operation at frequencies above 10 GHz, possibly up to around 40 GHz.
Abstract:
A process for forming an ohmic contact on the back surface of a semiconductor body includes depositing a donor layer on the back surface of the semiconductor body followed by a sintering step to form a shallow intermetallic region capable of forming a low resistance contact with a contact metal.
Abstract:
A Mach-Zehnder interferometer modulator for modulating a beam of laser light includes a pair of separate waveguides through which the laser light is passed after splitting in a splitting zone and after which the light is recombined in a merge zone. The waveguides are formed in a semiconductor material with one of the electrodes of each pair being formed in a doped layer while the other electrode, the top electrode, is a surface metalisation. The doped layer is trenched so that adjacent electrodes in the doped layer are electrically isolated from one another so that one of the electrodes in the doped layer can be connected with a different electrical polarity to the other electrode in the doped layer thereby permitting the connection of the pairs of electrodes in parallel anti-phase mode.
Abstract:
An optical modulator comprises a Z-cut lithium niobate substrate (21) on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides (23, 25) lying beneath a buffer layer of dielectric material (27). First and second ground electrodes (29, 33) and a hot electrode (31) are disposed on the buffer layer (27), the first and second ground electrodes (29, 33) being spaced either side of the hot electrode (31), the hot electrode (31) and the first ground electrode (29) being proximate to at least apart of the respective waveguides (25, 23). The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained. When the spacing (G1) between the first ground and hot electrodes (29, 31) is smaller than the spacing (G2) between the second ground and hot electrodes (33, 31), and preferably the hot and first ground electrodes have a width not exceeding 15 μm, the modulator is capable of operation at frequencies above 10 GHz, possibly up to around 40 GHz.
Abstract:
A process for forming an ohmic contact on the back surface of a semiconductor body includes depositing a donor layer on the back surface of the semiconductor body followed by a sintering step to form a shallow intermetallic region capable of forming a low resistance contact with a contact metal.
Abstract:
Systems and techniques for generating optical pulses exhibiting a progressive phase shift, and the use of those pulses to transmit data, are described. One embodiment of the invention employs a Mach-Zehnder modulator using electrical signals chosen to introduce a predetermined frequency shift at the center of each pulse generated by the pulse generator. This frequency shift is achieved by introducing a timing difference between the electrical input signals. Another embodiment of the invention employs a chirp free pulse generator and a separate phase modulator to induce the desired frequency or phase shift. These progressively phase shifted pulses may be further modulated to transmit data by introducing phase or amplitude modulation on the optical pulses, depending on the data to be transmitted.
Abstract:
A push-pull thermooptic interferometer switch can be controlled using only one control lead and one drive signal per switch. Advantageously, using only control signal lead and one electrical driver per switch can greatly reduce the complexity of the electronics needed to drive a switch array. The single control lead push-pull thermooptic interferometer switch can be driven by controllable voltage or current signals. The connections of the control and other signal leads to an array of these switched can be made in a planar manner without the need for crossover paths.
Abstract:
A push-pull thermooptic interferometer switch can be controlled using only one control lead and one drive signal per switch. Advantageously, using only control signal lead and one electrical driver per switch can greatly reduce the complexity of the electronics needed to drive a switch array. The single control lead push-pull thermooptic interferometer switch can be driven by controllable voltage or current signals. The connections of the control and other signal leads to an array of these switched can be made in a planar manner without the need for crossover paths.