Abstract:
A tunable photonic crystal device comprising: alternating layers of a first material and a second material, the alternating layers comprising a responsive material, the responsive material being responsive to an external stimulus, the alternating layers having a periodic difference in refractive indices giving rise to a first reflected wavelength; wherein, in response to the external stimulus, a change in the responsive material results in a reflected wavelength of the device shifting from the first reflected wavelength to a second reflected wavelength.
Abstract:
The present invention relates to a device for controlling optical frequency (F1, F2) about a central working frequency (F0). This device comprises a vertical cavity (2) formed of two parallel and partially reflecting walls (3a, 3b), and a membrane (6) comprising at least one layer (7a, 7b) structured in the form of a photonic crystal. In this device, the two walls (3a, 3b) are separated by an optical distance substantially proportional to half the wavelength (λ0) corresponding to the central working frequency (F0). The membrane (6) is integrated between the walls (3a, 3b) of the cavity (2) and devised in such a way as to exhibit a mode of optical resonance at this central working wavelength (λ0). At least one layer of the device is made up of at least one portion of a material exhibiting nonlinear optical properties. The present invention also relates to various systems implementing means of optical pumping and such a device for controlling optical frequency, as well as to a method of manufacturing such a device for controlling optical frequency.
Abstract:
A device is provided with a semiconductor gain medium (1) having an inclined or curved stripe structure, a Volume Bragg Grating element (3) constituting a resonator with the semiconductor gain medium (1), and a wavelength conversion element (5) which outputs a harmonic wave (H) of a fundamental wave (A) from the resonator. Preferably, the semiconductor gain medium (1) is a frequency incoherent and broadband semiconductor gain medium, the wavelength conversion element (5) is a periodic polarization type nonlinear wavelength conversion element, and the Volume Bragg Grating element (3) and the periodic polarization type nonlinear wavelength conversion element (5) have a grating period having a chirped structure.
Abstract:
A laser ray wavelength modification apparatus that includes a semiconductor laser element, a fundamental wave light reflecting element, a wavelength modification element, a selective reflection member and a dichroic mirror. The selective reflection member permits fundamental wave light among light rays emitted from the wavelength modification element to pass through to the fundamental wave light reflecting element while reflecting the wavelength modification light. The dichroic mirror is arranged between the semiconductor laser element and the wavelength modification element. The dichroic mirror transmits the fundamental wave light and removes by reflection out the wavelength modification light.
Abstract:
A method of forming a buried oxide/crystalline III-V semiconductor dielectric stack is presented. The method includes providing a substrate and forming a layered structure on the substrate comprising of layers of different materials, one of the different materials is selected to be an oxidizable material to form one or more buried low index oxide layers. A first sequence of oxidizing steps are performed on the layered structure by exposing the edges of the layered structure to a succession of temperature increases in the presence of steam from an initial temperature to the desired oxidation temperature for a time interval equal to the sum of the time intervals of the succession of temperature increases. Also, the method includes performing a second sequential oxidizing step with steam on the layered structure at the specific oxidation temperature for a specific time interval. Furthermore, the method includes performing a final sequence of oxidizing steps on the structure by ramping down from the desired oxidation temperature to a final temperature when the oxidizing material is completely oxidized to form the one or more buried low index oxide layers.
Abstract:
The present invention relates to a reflective spatial light modulator enabling improvement of light resistance and prevention of damaging of the liquid crystal layer. The reflective spatial light modulator controls phases of the incident light and a reflected light while reflecting light made incident from a front side, and comprises a liquid crystal layer, a dielectric multilayer film, and a phase shift layer. The liquid crystal layer is filled with a liquid crystal comprised of a light modulating material, and modulates the incident light. The dielectric multilayer film reflects the incident light. The phase shift layer is disposed between the liquid crystal layer and the dielectric multilayer film to shift phases of the incident light and the reflected light at an interface of the liquid crystal layer.
Abstract:
A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.
Abstract:
Optical parametric oscillator including a semiconductor microcavity being configured to spatially localize polaritons of at least three quantized polariton energy levels to effect an optical parametric oscillation.
Abstract:
A wavelength converting laser device includes a laser diode producing laser light and including an optical resonator having a pair of facing reflectors, including a reflecting surface having a shape reducing loss in the optical resonator, with regard to a specific horizontal transverse mode of laser light as compared to the loss in the optical resonator for other horizontal transverse modes, and a wavelength converter for converting the laser light into harmonic light.
Abstract:
Optical parametric oscillator including a semiconductor microcavity being configured to spatially localize polaritons of at least three quantized polariton energy levels to effect an optical parametric oscillation.