Abstract:
An apparatus, system, and method are provided to cause a controlled device and a controlling terminal to operate in collaboration with each other. A server apparatus stores in advance a plurality of sets of collaboration information which causes the controlled device and the controlling terminal to operate in collaboration with each other. The plurality of sets of collaboration information is respectively stored in association with a plurality of controlled apparatuses different from one another in type. When the controlling terminal requests the server apparatus to send the collaboration information designating the type of the controlled device, the server apparatus sends to the controlling terminal the collaboration information corresponding to the type of the controlled device. The controlled device and the controlling terminal operate in collaboration with each other using the collaboration information.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
A communication interface and a device control, management and monitoring system are provided to enable the networking of and communication between a multiple devices operating under different protocols. The communication interface may act as a translator or protocol converter that reformats transmissions from one protocol to another based on protocol compatibility between the recipient and transmitting devices. The device control and monitoring system may store predefined rules that are triggered when specified conditions associated with the networked devices are detected. The rules may specify an action to take such as transmitting a discount offer to a user or turning off a light. According to one or more arrangements, the communication interface may act as an intermediary between the networked devices and the device control system so that the device control system is not required to understand or be compatible with the various other protocols used by the networked devices.
Abstract:
Devices and systems control energy usage in accordance with instructions from a head end system. A device may be instructed to cease energy consumption. Another device may allow users to override some instructions. Messages may be provided to users to request the cessation of energy consumption; the users may, but need not comply.
Abstract:
A smart home network system includes a number of traditional home devices having wireless communication function, a smart gateway, and a plurality of signal conversion devices. When the smart gateway wants to control a traditional home device, the smart gateway sends a cable control signal to a related signal conversion device in the area where the target traditional home device is placed. The related signal conversion device receives the cable control signals from the smart gateway, and converts the cabled control signal into a wireless control signal conforming to the wireless communication function type of the target tradition home device, then transmits the wireless control signal to the target traditional home device. Therefore, the traditional home devices with wireless communication function can be connected into the system, and be controlled by the smart gateway.
Abstract:
In some embodiments a method comprises receiving, in a WiMAX Signaling forwarding function (SFF) node, a preregistration request for a mobile station, in response to the preregistration request, generating a flag to indicate whether the request is being processed by the WiMAX Signaling forwarding function node, and forwarding a preattachment request from the WiMAX Signaling forwarding function node to an access gateway, wherein the preattachment request comprises the flag. Other embodiments may be described.
Abstract:
Embodiments of a mobile station and a method performed by a base station for transmitting a paging message to an idle-mode mobile station are disclosed herein. In some embodiments, a multicarrier paging information (MC-PAG-Info) message is transmitted to indicate a time-slot and paging carrier for a subsequent transmission of a paging message to an idle-mode mobile station. The idle-mode mobile station may monitor the indicated paging carrier during the indicated time-slot of a paging listening interval for receipt of a paging message directed to the idle-mode mobile station. In some embodiments, the indicated time-slot and the paging carrier are determined by the idle-mode mobile station using a device identifier of the idle-mode mobile station and hash modulo parameters provided within the paging information message.
Abstract:
A multimedia assembly with a programmable universal remote control unit, which is configured to “learn” remote control codes from original remote control units, and which provides that remote control signals are transmitted from original remote control units to the control unit where they are analyzed, decoded, and newly encoded; and wherein newly encoded signals are then transmitted from the control unit to the universal remote control unit that is to be programmed, where they are stored in a memory.
Abstract:
An intermediary between a remote control device and a remotely controllable device implements identification and/or authentication. The intermediary is, e.g., a node or set of nodes within a head end of a cable network service provider. A remote control device at a customer premise sends a command intended to control a remotely controllably device which is also located at the same customer premise. The customer premise includes a network interface, e.g., a cable modem, which has associated identification information. The command and the associated network interface identification information are communicated to the intermediary, e.g., via a cable modem. The intermediary accesses a subscriber record corresponding to the location based on the network interface identification information. The intermediary identifies the device to be controlled, e.g., a particular set top box and/or authenticates the remote control device. A command is sent via the network to the device to be controlled.
Abstract:
A single format of MAC control message may be used for the addition, deletion, or rearrangement of users in a group within a wireless network. In some cases, a change in the nature of the group may be implemented immediately upon receipt of a positive acknowledgement. A mobile station may determine its ACID without maintaining information about the previous ACID or startup frame.