Abstract:
A method and apparatus for maintaining a viewing window of a detector substantially clean includes enclosing the detector within a housing, and moving a target surface relative to the viewing window to create an airflow adjacent the viewing window. The housing can include an aperture through which the viewing window of the sensor views the target surface. Motion of the target surface creates an airflow velocity adjacent the viewing window for maintaining the viewing window substantially clean. To increase the accuracy of the detector, a high emissivity area is provided on an outside surface of the housing which faces the target surface.
Abstract:
The present invention provides a refresh clock generator which optimally controls a period of a refresh clock signal according to temperature variation and outputs the refresh clock signal. The refresh clock generator includes a bias voltage generating unit for generating first and second bias voltages in response to a temperature variation and a clock generator for generating a refresh clock signal having a frequency which is controlled or adjusted based on the first and second bias voltages, wherein the first bias voltage is varied in proportion to the temperature variation; the second bias voltage is varied in inverse proportion to the temperature variation; and the frequency of the refresh clock signal is varied in proportion to the temperature variation.
Abstract:
A heating drying type infrared moisture meter which detects the temperature of a sample heated and dried on a sample plate 4 by using temperature detection means for carrying out moisture content determination, wherein said temperature detection means is a radiation thermometer 10 which is covered with a heat insulating material, being disposed aslant above the sample plate 4 with a definite separation from a sample on the sample plate 4 being provided, and which light receiving portion is provided with a removable clear protection cover 26, and a heating reference element 17 for carrying out temperature calibration of the radiation thermometer 10 is removably disposed inside of said sample plate 4.
Abstract:
A wave-collecting device of a non-contact type thermometer comprises a main body. An ellipsoid groove is disposed in the main body. The groove can be composed of at least two inclined planes. An opening is disposed at the bottom of the ellipsoid groove and located above a focus thereof. An ellipsoid reflecting mirror is disposed on the surface of the ellipsoid groove. A sensor is disposed below the opening at the bottom of the ellipsoid groove. The detection head of the sensor is located at the focus. In addition to being directly incident onto the sensor, infrared rays emitted by a target at the other focus of the ellipsoid groove can be reflected by the ellipsoid reflecting mirror once to be focused onto the sensor. Therefore, stable and reliable infrared energy reception can be accomplished. Moreover, the advantage of low cost can be achieved.
Abstract:
Apparatus and a method for radiometric temperature measurement comprises a radiometer receiver coupled to an antenna/calibration switch that has coupled thereto a brightness temperature signal. A driver coupled to the antenna/calibration switch controls the operation of the switch between an antenna mode and a calibration mode. An adjustable cold/warm noise source is coupled to the antenna/calibration switch to provide a calibration radiation temperature applied through the antenna/calibration switch in the calibration mode to the radiometer receiver. An output of the radiometer receiver is coupled to the adjustable cold/warm noise source and is adjusted in accordance with the output of the radiometer receiver for a null comparison measurement. Also coupled between the output of the radiometer receiver and the antenna/calibration switch is a mode selector switch that operates to a mode one position to couple the output of the radiometer receiver to the adjustable cold/warm noise source. A bias source is also coupled to the mode selector switch and actuation of the mode selector switch into a mode two position couples the bias source to the adjustable cold/warm noise source.
Abstract:
An apparatus for managing the temperature of an integrated circuit having a multiple core microprocessor is described. Specifically, thermal sensors are placed at potential hot spots throughout each microprocessor core. A thermal management unit monitors the thermal sensors. If a thermal sensor identifies a hot spot, the thermal management unit adjusts the operating frequency and voltage of that microprocessor core accordingly.
Abstract:
An antenna-coupled microbolometer structure comprises a substrate (301), an antenna (102, 103) supported by the substrate, and a thermally sensitive element (101, 305) connected to the antenna and arranged to dissipate electric currents induced into the antenna. Both the antenna (102, 103) and the thermally sensitive element (101, 305) comprise material that is susceptible to achieving a superconductive state below a certain critical temperature. The thermally sensitive element (101, 305) is supported at a distance from the substrate (301) leaving an empty gap (306) between the thermally sensitive element (101, 305) and a surface of the substrate (301).
Abstract:
Methods and systems are disclosed for detecting overheating in an optical device before harmful consequences, such as severe local heating, can result. In one embodiment of the invention, a blackbody emitter is disposed in close proximity to a therapeutic optical fiber to absorb therapeutic radiation at a fault and re-emit blackbody (infrared) radiation. The emitter can be coupled to the fiber but, during normal operation, lies outside the optical path between the output of the laser radiation and the site of treatment. Systems and catheters incorporating such emitters are also described for effective monitoring of the laser power transmitted along the optical fiber within the phototherapy device.
Abstract:
A non-invasive apparatus and method for measuring a temperature of a portion of a living body, includes a signal receiving unit receiving electromagnetic wave signals emitted from the portion of a living body to be measured, a signal processing unit processing the electromagnetic signals input from the signal receiving unit and outputting a radiation power signal, a medium characteristic measurement unit measuring a value of a conductivity or a permittivity of the portion of the living body to be measured and outputting the measured value, and a temperature conversion unit including a computer database storing a plurality of temperature conversion tables with respect to radiation power according to the conductivity or the permittivity of the portion of the living body and determining a corresponding temperature using the measured value of the conductivity or the permittivity of the portion of the living body and the radiation power signal of the signal processing unit.
Abstract:
A body temperature detector is particularly suited to axillary temperature measurements of adults. The radiation sensor views a target surface area of the body and electronics compute an internal temperature of the body as a function of ambient temperature and sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature to account for varying perfusion rate. Preferably, the coefficient varies from a normal of about 0.13 through a range to include 0.09. The ambient temperature used in the function is assumed at about 80null F. but modified with detector temperature weighted by 20%.