Abstract:
A user equipment performs downlink measurement on neighbour cells, but the measurement performance on a target cell (in terms of measurement period/sampling/accuracy etc) is dependent on the relative performance difference between the target cell and a reference cell. The reference cell may be the serving cell, or may be the strongest cell. The network is thus able to keep track of the required number of target cells without degrading the measurement performance of important cells. The UE on the other hand is still able to save its battery as much as possible while making full use of DRX.
Abstract:
In a method of operating a communication network (20) a time division duplex (TDD) frame (F) of information is communicated over a radio interface (32) between a wireless terminal (30) and a base station node (28). The method comprises the wireless terminal (30) receiving plural downlink (DL) subframes of the frame and, in response thereto, configuring a Physical Uplink Control Channel (PUCCH) channel to comprise up to four acknowledgements by using only two PUCCH channel resources and using PUCCH format 1a or PUCCH format 1b. In an example embodiment a PUCCH channel resource is specified by a sequence utilized for transmission of at least part of the PUCCH channel and a cyclical shift applied to the sequence. The two sequences of the respective two PUCCH resources are orthogonal, and the cyclical shift of the two PUCCH resources can be in a frequency domain, a time domain, or both the frequency domain and the time domain.
Abstract:
A receiver receives, using a plurality of antennas, a multiplexed signal that includes (i) a first OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying a pilot symbol and a subcarrier carrying a data symbol and (ii) a second OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying the pilot symbol and a subcarrier carrying the data symbol. A decoder uses the symbol including multiplex information and decodes the data symbol.
Abstract:
A method of configuring a plurality of rendezvous servers to provide a Host Identity Protocol, HIP, based mobility service to HIP nodes, where the servers are arranged in a hierarchical branching structure. For each HIP node, a Host Identity Tag, HIT,-and contact address mapping is registered with a rendezvous server (101). That server then identifies itself and the HIT to each higher level server within the same branch, without explicitly identifying the contact address to those higher level servers (103) wherein, in use, when a first rendezvous server receives a HIP contact message addressed to a given HIT (201), if that first server is unaware of the destination HIT, it forwards the message to a higher level server within the same branch (204), and if the first server is not the server at which the HIT is registered but is aware of the HIT, it forwards the contact message to the neighbouring rendezvous server corresponding to the HIT (203).
Abstract:
A method of generating a reference signal includes acquiring a base sequence and acquiring a reference signal sequence with a length N from the base sequence. Good PAPR/CM characteristics of the reference signal can be kept to enhance performance of data demodulation or uplink scheduling.
Abstract:
Provided is a radio communication base station device which can obtain a maximum frequency diversity effect of a downstream line control channel. The device includes: an RB allocation unit (101) which allocates upstream line resource blocks continuous on the frequency axis for respective radio communication mobile stations by the frequency scheduling and generates allocation information indicating which upstream line resource block has been allocated to which radio communication mobile station device; and an arrangement unit (109) which arranges a response signal to the radio communication mobile station device in the downstream line control channels distributed/arranged on the frequency axis while being correlated to the continuous upstream line resource blocks according to the allocation information.
Abstract:
Random access technology is provided for establishing an individual channel between a radio communication terminal device and a base station device in a short time and a radio communication terminal device executing the random access method. A RACH sub-channel allocation unit allocates a transmission packet input from a replication unit to an arbitrary sub-carrier at the RACH arbitrary time slot at random. An allocation unit judges whether an overlap is generated in the allocation result obtained by the RACH sub-channel allocation unit.
Abstract:
A radio terminal in a radio communication system receives a physical downlink control signal comprising a control field and a new data indicator (NDI) field and determines that a value of the NDI field is one of a first value and a second value. A physical uplink shared channel signal is generated according to both a specific transport format and a specific redundancy version. The control field is used to determine the specific transport format when the NDI field is determined to be the first value, and the control field is used to determine the specific redundancy version when the NDI field is determined to be the second value.
Abstract:
A radio terminal in a radio communication system receives a physical downlink control signal comprising a control field and a new data indicator (NDI) field and determines that a value of the NDI field is one of a first value and a second value. A physical uplink shared channel signal is generated according to both a specific transport format and a specific redundancy version. The control field is used to determine the specific transport format when the NDI field is determined to be the first value, and the control field is used to determine the specific redundancy version when the NDI field is determined to be the second value.
Abstract:
A symbol mapping method for repetition coding is disclosed. The symbol mapping method comprises performing repetition coding on codeword to output repeated codeword symbols, and mapping the repeated codeword symbols with subcarriers located in different localized resource blocks. According to the embodiments of the present invention, it is possible to obtain maximum reliability in a receiving side by mapping codeword bits with subcarriers to reduce the number of bits having low reliability when a transmitting side uses repetition coding. Also, it is possible to improve decoding throughput and obtain channel diversity.