Abstract:
A digital camera for capturing and processing images of different resolutions and a corresponding method for down-scaling a digital image are provided. The method includes forming an image of a real scene on an image sensor that is made up of a plurality of pixels arranged in a matrix. The method further includes addressing and reading pixels in the matrix to obtain analog quantities related to the pixels luminance values, converting the analog quantities from the pixels matrix into digital values, and processing the digital values to obtain a data file representing the image of the real scene. To reduce computation time and power consumption, the addressing and reading of the pixels includes selecting a group of pixels from the matrix, and storing the analog quantities related to the pixels of the selected group of pixels into an analog storing circuit. The stored analog quantities are averaged to obtain an analog quantity corresponding to an average pixel luminance value.
Abstract:
An image sensor has an array of pixels. Each column has a first and a second column line connected to a read-reset amplifier/comparator which acts in a first mode as a unity gain buffer amplifier to reset the pixels via the first lines, and in a second mode acts as a comparator and AD converter to produce digitized reset and signal values. The reset and signal values are read out a line at a time in interleaved fashion. Reset values are stored in a memory and subsequently subtracted from the corresponding signal values. The arrangement reduces both fixed pattern and kT/C noise.
Abstract:
A look-up table apparatus is provided for performing two-bit arithmetic operation including carry generation. The look-up table is modified to perform two concurrent combinatorial functions, or one function for an increased number of inputs. The look-up table of the present invention can implement two full adders or subtractors, or two-bit counters, for example. One portion of the modified look-up table provides two bits of a sum output, and another portion of the modified table provides a fast carry out signal for application to a next stage of an adder/subtractor/counter.
Abstract:
Lighting flicker in the output of a video imaging device is detected. The video imaging device has a main picture area divided into pixels for producing successive images at a frame rate. A series of signals are produced from at least one additional picture area adjacent the main picture area, with the additional picture area having a size substantially larger than a pixel. Each of the signals is a function of light incident on the additional picture area in a time period substantially shorter than that of the frame rate. A predetermined number of the signals are accumulated to form a series of compound samples, and the compound samples are filtered to detect components indicating the lighting flicker. The filtering is performed using a bandpass filter tuned to the nominal flicker frequency. The compound samples are formed at a sample rate which is a multiple of the nominal flicker frequency, and the filtering is performed by taking the fundamental output component of a radix-N butterfly.
Abstract:
A first-in, first-out (FIFO) memory cell architecture is provided in which one node of the latch in the FIFO memory cell is connected to the gate of the pass transistor. Further, the bit line is connected to the source of the pass transistor, and the word line is connected to the drain of the pass transistor to provide a stable memory cell requiring less area for implementation.
Abstract:
A glitch filter includes a storage element for storing a current state, which is the output of the filter. An output of the storage element is connected to one input of a state comparator. Another input of the state comparator is connected to an input signal. A programmable clock delay is connected between the state comparator and the storage element. The programmable clock delay may provide a programmed duration independent of the technology used for implementation. The glitch filter is arranged such that the input signal is stored as the new current state in the storage element only if the input signal changes and then remains unchanged for the programmed duration.
Abstract:
A method of operating a display includes performing a non-synchronized touch scan pattern on a display with a controller coupled to the display. The non-synchronized touch scan pattern schedules touch scans independent of a refresh rate of the display. Upon the controller detecting a first synchronization pulse from a display controller coupled to the controller and the display, a first pulse-checking timer is started. Upon detecting a second synchronization pulse from the display controller and before the first pulse-checking timer expires, a first display refresh rate for the display is obtained from an interval between the first synchronization pulse and the second synchronization pulse. A synchronized touch scan pattern is performed with the controller, and is scheduled to avoid touch scans coinciding with refreshes of the display performed at the first display refresh rate.
Abstract:
The present description concerns a converter comprising an AC-DC conversion stage comprising a first thyristor, a first power supply circuit delivering a first reference voltage between a first node and a second node, and a second power supply circuit delivering a second reference voltage between third and fourth nodes, the cathode of the first thyristor being coupled to the first node of the first power supply circuit by a first switch and being connected to the fourth node, the second power supply circuit comprising a first rectifying element coupled to the second node of the first power supply circuit and coupled to the third node.
Abstract:
The present description concerns a converter comprising an AC-DC conversion stage comprising a first thyristor, a first power supply circuit delivering a first reference voltage between a first node and a second node, and a second power supply circuit delivering a second reference voltage between third and fourth nodes, the cathode of the first thyristor being coupled to the first node of the first power supply circuit by a first switch and being connected to the fourth node, the second power supply circuit comprising a first rectifying element coupled to the second node of the first power supply circuit and coupled to the third node.
Abstract:
The present description concerns a circuit for converting from a first alternating voltage to a second voltage. The circuit includes: a first thyristor; a first control circuit of the first thyristor; a power factor correction circuit comprising a coil; and a first circuit configured to convert a third voltage into a fourth DC voltage. The third voltage corresponds to a difference between a potential at a first node connected to an output node of the coil and a reference potential. The fourth DC voltage is configured to supply the first control circuit of the first thyristor, and is referenced with respect to the same reference potential as the third voltage.