Optical fiber coating die with reduced wetted length

    公开(公告)号:US11524920B2

    公开(公告)日:2022-12-13

    申请号:US17112192

    申请日:2020-12-04

    Abstract: An optical fiber coating apparatus that provides increased gyre stability and reduced gyre strength, thereby providing a more reliable coating application process during fiber drawing includes a cone-only coating die having a conical entrance portion with a tapered wall angled at a half angle α, wherein 2°≤α≤25°, and a cone height L1 less than 2.2 mm, and a cylindrical portion having an inner diameter of d2, wherein 0.1 mm≤d2≤0.5 mm and a cylindrical height of L2, wherein 0.05 mm≤L2≤1.25 mm; a guide die having an optical fiber exit, the guide die disposed adjacent the cone-only coating die such that a wetted length (L5) between the optical fiber exit of the guide die and the entrance of the cone-only coating die is from 1 mm to 5 mm; and a holder for holding the cone-only coating die and the guide die in a fixed relationship defining a coating chamber between the guide die and the cone-only coating die, the coating chamber having an inner radius L6 from the optical fiber axis to an inner wall of the holder that is from 3 mm to 10 mm.

    Optical fiber with dual trench design

    公开(公告)号:US11506834B2

    公开(公告)日:2022-11-22

    申请号:US17319167

    申请日:2021-05-13

    Abstract: A single mode optical fiber is provided that includes a core region having an outer radius r1 and a maximum relative refractive index Δ1max. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, has a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.002 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength and a cable cutoff of less than or equal to about 1260 nm.

    OPTICAL FIBER FOR DATA CENTERS
    144.
    发明申请

    公开(公告)号:US20220291445A1

    公开(公告)日:2022-09-15

    申请号:US17682379

    申请日:2022-02-28

    Abstract: The disclosure provides optical fibers that exhibit low macrobend loss at 1550 nm at bend diameters between 10 mm and 40 mm. The relative refractive index profile of the fibers includes a trench cladding region with small depth, large width and a trench volume configured to minimize macrobend loss at large and small bend diameters. The optical fiber includes an outer cladding region that surrounds and is directly adjacent to the trench cladding region and an optional offset cladding region between the trench cladding region and the core region. In some embodiments, the trench cladding region has a relative refractive index that decreases monotonically from the inner radius to the outer radius. The monotonic decrease in relative refractive index may have a constant slope. The low macrobend loss at large and small diameters makes the optical fibers well suited for space-constrained deployment environments, such as data centers.

    MULTICORE OPTICAL FIBER
    145.
    发明申请

    公开(公告)号:US20220283362A1

    公开(公告)日:2022-09-08

    申请号:US17670941

    申请日:2022-02-14

    Abstract: A multicore optical fiber includes an inner glass region having a plurality of core regions surrounded by a common outer cladding, the inner glass region further having at least one marker and an outer diameter in the range of 120 microns and 130 microns, wherein each core region is comprised of a germania-doped silica core and a fluorine-doped silica trench, wherein the trench volume of the fluorine-doped silica trench is greater than 50% Δ microns2. The fiber has an outer coating layer surrounding the inner glass region, the outer coating layer having a primary coating layer and a secondary coating layer with a diameter of the secondary coating layer equal to or less than 200 microns, wherein each core region has a mode field diameter greater than 8.2 microns at 1310 nm, a cable cutoff wavelength of less than 1260 nm, and zero dispersion wavelength of less than 1335 nm.

    High speed draw optical fiber coating system and method

    公开(公告)号:US11407682B2

    公开(公告)日:2022-08-09

    申请号:US16930723

    申请日:2020-07-16

    Abstract: An optical fiber draw system and method of coating an optical fiber. The system includes a furnace for heating an optical fiber preform, a draw assembly for drawing the optical fiber at a draw speed greater than 50 meters per second, a first coating applicator for applying a first coating onto the fiber, and a first curing assembly comprising a first plurality of light sources comprising light-emitting diodes for partially curing the first coating. The optical fiber draw system also includes a second coating applicator for applying a second coating onto the fiber on top of the first coating, and a second curing system comprising a second plurality of light sources for curing the second coating, wherein the first coating is further cured in the range of 15-50 percent after leaving the first curing assembly.

    MULTICORE OPTICAL FIBER WITH DEPRESSED INDEX COMMON CLADDING

    公开(公告)号:US20220066090A1

    公开(公告)日:2022-03-03

    申请号:US17411192

    申请日:2021-08-25

    Inventor: Pushkar Tandon

    Abstract: A multicore optical fiber comprising: a depressed index common-cladding region having a refractive index Δcc; and a plurality of core portions disposed within the depressed index common-cladding region, wherein each core portion comprises: a central axis, a core region comprising a relative refractive index Δ1, an inner-cladding region encircling and directly contacting the core region comprising a relative refractive index Δ2, a trench region encircling and directly contacting the inner cladding region comprising a relative refractive index Δ3, and an outer-cladding region encircling and directly contacting the trench region comprising a relative refractive index Δ4, wherein the refractive index of the depressed index common-cladding region Δcc is less than the refractive index of the outer-cladding region Δ4, and wherein a difference between the refractive index of the depressed index common-cladding region Δcc and the refractive index of the first outer-cladding region Δ4 is greater than 0.05% Δ.

    Optical fiber preforms with halogen doping

    公开(公告)号:US11261121B2

    公开(公告)日:2022-03-01

    申请号:US16165633

    申请日:2018-10-19

    Abstract: Preparation of halogen-doped silica is described. The preparation includes doping silica with high halogen concentration, sintering halogen-doped silica to a closed-pore state, and subjecting the closed-pore silica body to a thermal treatment process and/or a pressure treatment process. The temperature of thermal treatment is sufficiently high to facilitate reaction of unreacted doping precursor trapped in voids or interstices of the glass structure, but is below temperatures conducive to foaming. Core canes or fibers drawn from halogen-doped silica subjected to the thermal treatment and/or pressure treatment show improved optical quality and possess fewer defects. The thermal treatment and/or pressure treatment is particularly advantageous when used for silica doped with high concentrations of halogen.

    LOW CROSS-TALK MULTICORE OPTICAL FIBER FOR SINGLE MODE OPERATION

    公开(公告)号:US20220026629A1

    公开(公告)日:2022-01-27

    申请号:US17443588

    申请日:2021-07-27

    Abstract: A multicore optical fiber comprises a common cladding and a plurality of core portions disposed in the common cladding. Each of the core portions includes a central axis, a core region extending from the central axis to a radius r1, the core region comprising a relative refractive index Δ1, an inner cladding region extending from the radius r1 to a radius r2, the inner cladding region comprising a relative refractive index Δ2, and a depressed cladding extending from the radius r2 to a radius r3, the depressed cladding region comprising a relative refractive index Δ3 and a minimum relative refractive index Δ3 min. The relative refractive indexes may satisfy Δ1>Δ2>Δ3 min. The mode field diameter of each core portion may greater than or equal to 8.2 μm and less than or equal to 9.5 μm.

Patent Agency Ranking