Abstract:
A tool electrode for the electrical machining of a workpiece is displaced in various directions by the selective energization of a plurality of electromagnets on a first member. The pole pieces of the electromagnet on this member are juxtaposed with a conical surface of another, magnetically susceptible member. One of these members, e.g. the magnetically susceptible member, is connected to the tool electrode while the first member is connected to a support.
Abstract:
A body, e.g. a die or tool for use in electrical machining, is shaped by milling and/or electrical methods using a tool head oriented at a perpendicular to the contour to be shaped by reason of input signals to the several servomotors or controls of the tool head and/or sensor head. The latter is displaceable with at least three degrees of freedom, preferably including angular displacement in two mutually perpendicular planes, while the workpiece and tool may be positioned mutually with at least two additional degrees of freedom. The workpiece is finished by fluid honing with a similarly orientable nozzle.
Abstract:
A servosystem for electrical machining processes adapted to regulate a spark-discharge gap in electrodischarge machining and other material-removal, shaping or forming operations in which the energy of an electrical discharge across the gap is exploited. Instead of the usual reference voltage or other electrical value for comparison with a gap parameter whereby the difference or other algebraic comparison controls the electrode drive, a gap detector is provided to feed a substantially continuous (analog) value to a discriminator having a threshold value and producing a digital output in accordance with the comparison. The digital output represents an "advance" or a "retract" condition and is communicated via a suitable switch or amplifier to the respective electromagnetic member of the control system, the latter member being a servomotor mechanically coupled with the movable electrode or a fluid-control valve hydraulically or pneumatically coupled with the movable electrode.
Abstract:
A method of removing a toxic component from a gas, comprising mixing the gas with an electrolyte and passing the mixture of gas and liquid electrolyte through a narrow gap between a pair of electrodes across which an electric field is applied to induce electrochemical reaction between the gas and the electrolyte.
Abstract:
A spinodal decomposition-type hard or semi-hard magnetic alloy consisting by weight essentially of 3 to 20 % cobalt, 10 to 40 % chromium, 0.2 to 5 % one or both of niobium and tantalum, 0 to 5 % aluminum and the balance of iron. When aluminum is to be incorporated, its lower limit should be 0.5 %.
Abstract:
An EDM (electric-discharge machining) power supply system for generating self-adaptive discharge pulses wherein an electrode is spacedly juxtaposed with a workpiece across a discharge gap while a dielectric liquid coolant is passed therethrough. The electrode and the workpiece are relatively displaced during the machining of the latter to maintain the gap spacing generally constant via a servomechanism. According to the invention, there is applied across the electrode and the workpiece a direct-current arc-striking voltage sufficient to initiate discharge across the gap while permitting the voltage to build up thereacross to a level constituting a function of conductivity characteristic of the gap and to decay with a discharge across the gap. An analog signal is derived across the gap and represents the voltage buildup and decay thereacross. Machining current flow through the gap across the electrode and the workpiece is triggered by a digital signal derived when the analog signal exceeds a threshold value and initiation of the discharge is induced by the arc-striking voltage. A second digital condition terminates the machining current flow which is controlled by a semiconductive power switch turned on and off instantaneously in dependence upon the digital conditions. A limited current high-voltage source is connected in a closed loop circuit with the electrode, the workpiece and the gap to provide the voltage buildup across the latter, while the voltage across the gap is detected by a voltage divider or the like and the output of this voltage divider is supplied via an integrating circuit in a squaring or gating-type logic device, e.g., a Schmitt trigger capable of producing the digital output for triggering the semiconductive power switch of the machining-current power supply.
Abstract:
In response to a read command received by a system interface unit for accessing a plurality of blocks of data stored in said non-volatile semiconductor memory, a controller carries out selective read operations of blocks of data to two memories from the non-volatile semiconductor memory. The controller also carries out parallel operations of data transferring a first block of data, which has already been subjected to error detection and error correction operations by an error correction unit, from one of the two memories to a host system via said system interface unit and of data transferring of a second block of data to be subjected to the error detection and error correction operation, from said non-volatile semiconductor memory to the other of the two memories.
Abstract:
In a nonvolatile memory apparatus, a system bus receives address, command, and/or control signals. Memory cells store bits of data by shifting a threshold voltage to one of plural ranges. In writing a first page, the threshold voltage of a first memory cell remains in a first range or shifts into a second range. In writing a second page, the threshold voltage remains in the first or second voltages, or shifts into a third range from the first range or into a fourth range from the second range. Before writing the second page, the memory reads data from the first memory cell for generating the second page writing data. A shifting direction of the threshold voltage from the first to the second range is the same as a shifting direction from the first to the third range.
Abstract:
In response to a read command received by a system interface unit for accessing a plurality of blocks of data stored in said non-volatile semiconductor memory, a controller carries out selective read operations of blocks of data to two memories from the non-volatile semiconductor memory. The controller also carries out parallel operations of data transferring a first block of data, which has already been subjected to error detection and error correction operations by an error correction unit, from one of the two memories to a host system via said system interface unit and of data transferring of a second block of data to be subjected to the error detection and error correction operation, from said non-volatile semiconductor memory to the other of the two memories.
Abstract:
An expansion image processing board 6 (expansion information processing module) of the present invention, which is installable in a network printer 2 having an image processing board 5 (information processing module), includes: a second printer function control section 28 (expansion information processing section) which controls the network printer 2; and a router 31 (data relaying section) which relays data to the second printer function control section 28 or the image processing board 5. Therefore, the expansion image processing board 6 is capable of simply and efficiently extending a functionality of the network printer 2.