Abstract:
A device for driving a piezoelectric vibrator is comprised of an AC power supply for supplying electric power to a piezoelectric vibrator for vibration thereof, a detecting device for detecting current supplied to the piezoelectric vibrator, and a driving circuit interposed between the AC power supply and the piezoelectric vibrator so as to decrease the electric power being supplied to the piezoelectric vibrator as the current flowing therethrough increases. This structure brings a decrease in electric power being supplied to the piezoelectric vibrator when current flowing therethrough is increased during resonance of the piezoelectric vibrator, thereby enabling the restriction or regulation of the expansion and contraction of the piezoelectric vibrator while maintaining resonance thereof.
Abstract:
A drive circuit including a power stage [PSH/PSV] and a control stage therefor to co-operate to supply energy in a controlled manner with regard to a reference value to an inductive load when connected in operation, means [R21, R41/R25, R42] in the power stage to produce a lower level signal indicative of the energization of the load, means [HPR/VPR] to generate a reference value for the energization signal representing a required energization, means [U3.3/U3.4] to compare the energization signal and the reference value and generate an error signal representing any difference therebetween and means [U2.1/U2.3, U2.4] to apply said error signal to said control stage to alter the energy supplied to the load towards the required condition, the reference value may also be related to the frequency at which the load is energized (SE, FBF, OSC, D4).
Abstract:
An amplitude control unit for an ultrasonic machine comprises a load detector for detecting the load applied to the tip of a tool during ultrasonic machining on the work, a load/amplitude conversion circuit for converting the load output detected by the load detector into an amplitude conversion value appropriate for the load at the tip of the tool, an amplitude addition circuit for receiving the amplitude conversion value generated by the load/amplitude conversion circuit and for adding it to a predetermined amplitude value at no load. The vibration of the piezoelectric transducer is changed to correspond to the load applied to the work by sending the new amplitude value generated by the amplitude addition circuit to the high frequency oscillator.
Abstract:
An apparatus for producing an audible sound to indicate the occurrence of an incoming telephone call on a cellular telephone. The apparatus has a first circuit for producing a first waveform having a first voltage and a first frequency. The apparatus also has a second circuit for producing a second waveform, the second circuit being operably connected to the first circuit, thereby receiving the first waveform. The second waveform has a second voltage and a second frequency wherein the second frequency is proportional to the first voltage of the first waveform. The apparatus also has an amplifier for amplifying the second waveform to produce an amplified waveform, the amplifier being operably connected to receive the second waveform. The apparatus also has a sound generator for producing an audible sound from the amplified waveform wherein the sound generator is operably connected to receive the amplified waveform. The apparatus further has an enable circuit for enabling the audible sound to be produced in response to the incoming telephone call.
Abstract:
An arrangement to controllably vibrate a resiliently supported body including electromagnetic drive means energizable to vibrate the body, means to control the device means, means to detect the actual vibration of the body, the control means including digital signal processing means to produce a control pulse train representing a required phased difference from the detected vibration to control the energization of the drive means with an independently set phase difference from the detected frequency to sustain the vibration of the body.
Abstract:
A piezoelectric buzzer directly secured to a portion of a wrist watch casing and driven to vibrate the casing and produce an alarm sound. Associated circuitry alternately drives the piezoelectric buzzer at two different frequencies having a frequency ratio of 4:5 and at monotonically decreasing amplitudes as to produce alarm sounds like chimes.
Abstract:
There is disclosed a constant amplitude controller with feedback control for a vibratory feeder apparatus wherein a controlled rectifier is used to rectify the A.C. line voltage applied to the feeder solenoid and to control the voltage to the feeder solenoid. Triggering of the controlled rectifier is accomplished by a bias control signal which is composed of an A.C. phase shift voltage superpositioned by a variable D.C. bias voltage. Mechanical coupling is provided between the solenoid and a transducer which provides feedback to control logic circuitry. In the control logic circuitry, the signal received from the transducer is compared with a signal received from an operator adjusted potentiometer. In this manner, the desired amplitude of the vibrator apparatus is compared with the actual amplitude of the vibrator apparatus and, if there is a discrepancy, the control logic circuitry modifies the amount of control voltage being transferred by the controlled rectifier.
Abstract:
A wide bandwidth, ultrasonic frequency transducer drive circuit incorporates a first unidirectional signal path from a source of drive signals to the transducer. A second unidirectional signal path from the source of drive signals couples signals away from the transducer. A circuit resonant with the transducer causes a relatively high signal voltage to be developed across this transducer.
Abstract:
A polarizing DC voltage is generated at the capacitance of an ultrasonic transducer and then short circuited by a parallelly arranged electronic switch controlled by the command signal frequency to be radiated. A direct current stored in an inductance during the shorting phase is supplied by way of a decoupling diode to the electrodes to the electrostatic transducer upon opening of the switch thereby generating a polarizing DC voltage for the transducer which is regenerated periodically. For achieving additional energy recuperation, a booster capacitor is disposed in series with the inductance and a booster diode is connected in parallel with the booster capacitor and a portion of the inductance.