Abstract:
A drive assist apparatus which performs driving assistance in a predetermined interval having a gradient, includes average gradient information acquisition means for acquiring average gradient information of the predetermined interval; driving status information acquisition means for acquiring driving status information of a host vehicle; and gradient estimation means for estimating a gradient of a certain point within the predetermined interval or an average gradient of a certain interval within the predetermined interval, based on the average gradient information acquired by the average gradient information acquisition means and the driving status information of the host vehicle that is acquired by the driving status information acquisition means, and performs driving assistance in the predetermined interval, using the gradient that is estimated by the gradient estimation means.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
Abstract:
An apparatus and method of determining a driving state of a moving object using a gravity value sensor and a speed measurement device is provided. Specifically, disclosed is an apparatus and method that can determine whether a moving object is in a level driving state or in an inclining/declining-slope driving state using a Y-axis measurement value of an acceleration sensor and a speed of a speed measurement unit.
Abstract:
An electrically driven vehicle equipped with electric motors (1, 4) for driving or braking drive wheels (3, 6), and an electric motor controller (33) for controlling the electric motors includes: wheel speed detectors (9 to 12) for detecting the wheel speed of the drive wheels and that of idler wheels (7, 8); computing means (22 to 28, 35 to 38) for computing the slip ratio of the drive wheels based on the wheel speed of the drive wheels and that of the idler wheels; and a determiner (29) for determining that the drive wheels are slipping if the slip ratio exceeds a slip ratio determination value. If the wheel speed of the idler wheels is lower than set speeds Va2, Vb2, then the determiner (29) changes the slip ratio determination value to a value having as the same sign as, and a larger absolute value than, the values λa2, λb2 used when the wheel speed of the idler wheels is higher than the set speeds Va2, Vb2. This structure shortens acceleration time during acceleration traveling and reduces braking distance during deceleration traveling while inhibiting vibrations of the electrically driven vehicle.
Abstract:
A system for assisting the braking system of a vehicle includes a processor, a global position system receiver in communication with the processor, and an antenna for receiving global positioning system signals. The processor may be configured to determine the braking efficiency of the vehicle, collecting global positioning system information from the global position system receiver, determine a distance to an end of a grade of a road the vehicle is traveling based on the global positioning system information, determine if there is a possibility of failure of the braking system of the vehicle based on the braking efficiency of the vehicle and the distance to the end of the grade of the road the vehicle is traveling on, and execute a mitigating action to prevent braking failure.
Abstract:
A braking control system includes sensors for detecting pressure applied to a brake pedal. The system can also include a pressure sensor capable of detecting the hydraulic pressure of the braking system. The system can also include a position sensor for detecting a position of the brake pedal. The pressure applied to the brake pedal is compared to either the hydraulic pressure or the pedal position. If the resulting measurements are not correlated properly, braking countermeasures are applied. Braking countermeasures can include engine braking, regenerative braking, hydraulic assist, and brake pad assist.
Abstract:
A running control apparatus calculates a target driving or braking torque in a calculating block to control the vehicle driven or braked by this torque at a target speed against a running resistance changed with running circumstances of the vehicle. In a control block, when a driver-required braking torque based on the braking operation of the driver is smaller than the target braking torque, the running control for the vehicle is performed to brake the vehicle by the target braking torque. When the driver-required braking torque becomes higher than the target braking torque, the running control is stopped, and the driver manually brakes the vehicle by the driver-required braking torque. When the driver-required braking torque is decreased to be lower than the target braking torque or a predetermined braking torque corresponding to the release of the braking operation, the running control is restarted.
Abstract:
The invention relates to a method for measuring and estimating a brake factor in a vehicle brake system, said vehicle including a towing vehicle and a trailer having a plurality of wheel axles, wherein said method includes: initiating a controlled braking manoeuvre involving at least a first wheel axle and a second wheel axle; and obtaining values representing said brake factor for said wheel first wheel axle and said second wheel axle by a control unit which is provided with a brake adaptation function to obtain a brake balance between said towing vehicle and said trailer. The method furthermore includes: braking, in a forced manner, said first wheel axle when retardation of said vehicle is requested; estimating the brake factor for said first wheel axle by determining the brake pressure and braking torque for said first wheel axle; providing a transition phase after which said second wheel axle is braked, in a forced manner, and estimating the brake factor for said second wheel axle by determining the brake pressure and braking torque for said second wheel axle. An arrangement for measuring and estimating the brake factor in a vehicle brake system is also disclosed.
Abstract:
Described herein are devices, systems, and methods for managing the power consumption of an automotive vehicle, and thereby for optimizing the power consumption of the vehicle. The devices and systems for managing the power consumption of the vehicle typically include power management logic that can calculate an applied power for the vehicle engine based on information provided from the external environment of the vehicle, the operational status of the vehicle, one or more command inputs from a driver, and one or more operational parameters of the vehicle.
Abstract:
A electric vehicle comprises a drive wheel which is driven by a traction electric motor, a brake command device, a brake releasing unit, a brake shaft, a friction plate, and a braking spring. The brake shaft is rotatable in a brake realizing direction which is one direction by an operation of the brake command device, and is rotatable in a brake releasing direction which is the other direction by driving of the brake releasing unit. The friction plate is operatively connected to the traction electric motor, and is frictionally braked when the brake shaft is rotated in the brake realizing direction. The braking spring applies an elastic force to the brake shaft in a direction to rotate the brake shaft in the brake realizing direction. The brake releasing unit comprises a brake releasing motor, a displacement member which is displaced by driving of the brake releasing motor, and a displacement permitting spring which permits elastic relative displacement between the displacement member and the brake shaft, and applies an elastic force to the brake shaft in a direction to maintain a relative position between the brake shaft and the displacement permitting spring.