Abstract:
Disclosed are liquid coolants for electric systems and methods of making the same. An example liquid coolant for electric systems may comprise: a base oil, wherein the base oil is a major component of the liquid coolant; and a dissolved gas in an amount sufficient to have a measurable effect on fluid viscosity of the liquid coolant; wherein the liquid coolant has a kinematic viscosity at 100° C. of about 7 cSt or less.
Abstract:
Additive packages including multifunctional additive molecules are disclosed, including, for example, organic medium intercalated with lubricant nanoparticles. The additive package may be greaseless or may be added to materials such as base oils or greases, greaseless materials, or anti-corrosives, for example. The additive package added to materials may form a coating or lubricant that may be added to a surface of an object.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
The disclosure provides grey cast iron-doped diamond-like carbon coating compositions useful for reducing friction and wear in mechanical contact surfaces and methods for deposition of such compositions.
Abstract:
Method and System of lubricating at least one moving part with a medium. The medium includes a dissolved mixture of lubricant and compressed gas. The amount of lubricant and compressed gas may be controlled in forming the dissolved mixture in response to input conditions. A user and/or external factors may be used to determine the input conditions. In response to the input conditions the amount of lubricant and compressed gas is delivered to the moving part that is housed in a pressurized chamber. The properties of the dissolved mixture can be adjusted, whereby the properties may include, but are not limited to, the following: viscosity, temperature, and thermal conductivity. This adjustment to the gas may be accomplished, for example, by releasing gas from the pressurized chamber in an amount to adjust the properties. In a further approach, lubricant may be scavenged from the pressurized chamber by returning surplus lubricant to its original source or other designated location.
Abstract:
A lubricating oil composition having a total base number of at least about 8, comprising a major amount of oil of lubricating viscosity; an amount of one or more dihydrocarbyl dithiophosphate metal salt introducing into the lubricating oil composition no more than 0.06 wt. % of phosphorus; at least 1.2 wt. % of hindered phenol antioxidant; and boron, and/or a boron-containing compound or compounds in an amount providing the lubricating oil composition with at least 200 ppm by weight of boron, all weight percentages being based on the total weight of the lubricating oil composition.
Abstract:
A lubricating oil composition having a total base number of at least about 8, comprising a major amount of oil of lubricating viscosity; an amount of one or more dihydrocarbyl dithiophosphate metal salt introducing into the lubricating oil composition no more than 0.06 wt. % of phosphorus; at least 1.2 wt. % of hindered phenol antioxidant; and boron, and/or a boron-containing compound or compounds in an amount providing the lubricating oil composition with at least 200 ppm by weight of boron, all weight percentages being based on the total weight of the lubricating oil composition.