Abstract:
In a damping mechanism for a pivot door arranged in a door frame, comprising a door fixture arranged in or on the door panel, a frame fixture arranged in or on the door frame, a damper arrangement arranged in the door fixture or the frame fixture and a damper arrangement counter part mounted in the frame fixture or in the door fixture, a damper arrangement with a brake catcher provided with a damper member includes a spring element which pulls the brake catcher into the fixture and the damper arrangement counter part includes at least one trigger element which is abutted by the brake catcher during closing of the door, so that the damper arrangement begins to dampen the pivot movement of the door as soon as a fixture part of the door comes into contact with a fixture part of the door frame.
Abstract:
An actuating-arm drive is provided for cupboard doors. The drive includes an actuating arm that is hinged to a door and is subjected to the action of a spring. The actuating arm can be tilted over a pivoting area that is delimited by two end positions. The actuating-arm drive is equipped with at least one damper that damps the tilting motion of the actuating arm before the arm reaches either of the two end positions.
Abstract:
An end-stop damper including a damper body in the form of a cylinder, wherein a piston is guided so that it is displaceable in the cylinder receiving chamber. An air pressure is formed in the receiving chamber produces a braking force acting on the piston during its displacement. The receiving chamber includes at least one pressure reducing opening and the piston includes a bellows section which is actively connected to the cylinder according to pressure conditions in the receiving chamber. This invention substantially simplifies the structural design of the end-stop damper because the piston and the bellows section are connected to each other so that they are formed in one piece.
Abstract:
A home-bar door opening/closing device for a refrigerator. Guide slots 72 are provided in both side surfaces of an opening 59 provided in a refrigerator door 55 and connected to one ends of links 75 which rotate and vertically move. Then, a home-bar door 63 is installed in the opening 59 so that an upper end of the home-bar door 63 vertically rotates about a hinge 65. The other ends of the links 75 are pivotably connected to both side surfaces of the home-bar door 63, respectively. An upward elastic force from coil springs 77 is provided to the one ends of the links 75, while an elastic force from torsion springs 79 is provided to the other ends of the links 75. Accordingly, it is possible to reduce the impact due to the rapid opening of the home-bar door.
Abstract:
A retarding device insertable between two members connected to rotate relatively about a hinge axis, and which opposes and so retards such rotation in predetermined manner; the device having: a substantially cylindrical support carried integrally by a first of the rotationally connected members and substantially coaxial with the hinge axis; a coil, spring fitted interferentially to the support and terminating with two opposite radial arms projecting towards a second of said members connected to each other for relative rotation; and a retaining seat carried integrally by the second member and on which the arms of the spring rest, on opposite sides, and are stressed by the second member, as a consequence of the aforementioned relative rotation, to deform the spring in such a direction as to progressively reduce and, beyond a certain point of the moving path of the other member, substantially eliminate, the interference with which the spring is fitted to the support. The rotation of the rotationally connected members is broken in a predetermined manner.
Abstract:
A noise control device for a steel door includes a buffer, a shock-absorbing member, a stopping member, or only includes a colliding member. The noise control device is installed at any location of a steel door and a casting where noise may be generated when the steel door is closed or opened. The buffer consists of a cylinder, a lower sponge, a coil spring, a rod, and an upper sponge and possibly a colliding member. The buffer can be mainly installed on a deadbolt groove of the casing. The shock-absorbing member may be fixed on the steel door or the casing for reducing sound. The stopping member is fixed on the steel door to face the outer end of the buffer. The noise control device can reduce noise generated in opening and closing as much as possible and preventing the both from disfiguring or denting.
Abstract:
An apparatus and method for protecting a door, door casing, door knob and wall utilizing a door bump angled block, wherein the apparatus and method changes the orientation of a door bump relative to the door and wall. The apparatus and method of the present invention allows a door bump to contact the door or wall squarely, thus allowing the door bump to effectively dissipate the forces generated when the door or wall strikes the door bump. Further, the apparatus and method of the present invention allows the user to adjust the extent to which a door may be opened by varying the position of the door bump, thereby protecting the door, door casing, door knob, wall and abutting objects.
Abstract:
Disclosed is a hinge assembly for an automobile armrest for reducing or preventing noise during the opening/closing of the armrest and providing smooth opening/closing force using a damping force of gears. In the hinge assembly, a first body includes a first mounting plate, a pair of first rotating members, and a first fixed gear. A second body includes a second mounting plate, a pair of second rotating members, and a second fixed gear. Hinge shaft is coaxially aligned to the first and second fixed gears at lower ends of the first rotating member of the first body and the second rotating member of the second body. A pair of springs is wound around both outer surfaces of the hinge shaft and provides a resilient force to the first and second bodies. A support plate is mounted at a rear space of a second stage tray.
Abstract:
A multi-function door stop is provided comprising a first vertical plate for mounting to a wall and a second horizontal plate affixed to and extending outwardly from the first plate. A hollow elongated tube extends outwardly in a direction away from the second plate in a normal position substantially perpendicular to the first plate. An extension member is interposed between the second plate and the elongated tube, the extension member being fixedly secured at one end to the second plate. The elongated tube is pivotally connected to the other end of the extension member permitting adjustment of the tube to a ninety degree impact with the door. A means is associated with the extension member for releasably locking the tube in its normal position. In use, the door stop remains in its normal position until the elongated tube is struck by an object, such as a vacuum cleaner or mop. The impact releases the tube from its locked position and allows it to swing about its pivot point to an out of the way position substantially parallel to the wall.
Abstract:
An Overhead Doorstop Shock Absorbing Device for Freight Truck Doors as shown in FIG. 1 performs as follows. The overhead door is opened and moves upward until it meets the Overhead Doorstop Shock Absorbing Device, which then absorbs the energy through its springs, thus preventing the overhead door from overextending. This absorption of energy minimizes wear and reduces damage to springs, cables and rollers in current state of the art overhead door assembly systems. This greatly increases financial savings by reducing part consumption, labor costs and downtime. Due to the high usage of current state of the art overhead doors in freight trucks, problems will continue for the users. By the addition of the Overhead Doorstop Shock Absorbing Device, repairs are minimized and costs are reduced due to the ability of the device to absorb the energy that would otherwise damage the current state of the art overhead door systems.