Abstract:
A window regulator assembly having cables for driving one or more lifter plates along rails includes connectors for connecting the ends of cables together. The connectors are connectable together in a ‘use’ position and can be held in a lifter plate in the use position. By having the connectors connect to each other they withstand the tension in the cables when the window regulator assembly is at rest and the lifter plate is only required to withstand the differential tension between first and second cable segments during movement of the lifter plate. This allows the lifter plate to be formed from a relatively lower strength and less expensive material since it is subject to relatively lower stresses than prior art lifter plates.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
In one aspect, a method of operating a movable barrier operator includes engaging a flexible driven member with a drive of the movable barrier operator. The method includes moving the flexible driven member in a first direction to move a movable barrier connected to the driven member and monitoring the position of the movable barrier. In response to the movable barrier reaching a given position, the driven member is moved in a second direction without moving the movable barrier to remove slack from the driven member. In another aspect, a movable barrier apparatus includes a movable barrier controller operatively coupled to a movable barrier operator. The movable barrier controller is configured to cause the movable barrier operator to reverse direction of a flexible driven member a distance after stopping movement of a movable barrier toward a limit position and without moving the movable barrier.
Abstract:
A drive assembly for a sliding door is disclosed, the drive assembly having a power drive unit for providing a rotational force to rotate a cable drum of the drive assembly, the power drive unit being mounted within the sliding door; a cable having one end secured a guide track of the drive assembly and another end secured to the guide track; a roller assembly configured to slidably engage the guide track; an arm fixedly secured to the sliding door and pivotally mounted to the roller assembly at a pivot point; a pulley rotationally mounted to the roller assembly, the axis of rotation of the pulley being aligned with the pivot point and the cable engages the pulley in opposite directions as the cable drum rotates and the roller assembly slides along the guide track as the cable drum rotates, wherein movement of the roller assembly causes movement of the sliding door.
Abstract:
A cable-and-pulley mounted overhead door includes a mechanism for sensing when the cable is tending to slacken and to automatically take-up the slack so as to thereby prevent the cable from disengaging from its pulley. When the overhead door includes an automated drive system, provision is further made for sensing when the take up of slack has progressed to a determined degree and to responsively turn off the automated drive system.
Abstract:
An opening and closing device opens and closes a sliding door by using a cable connected to the sliding door movably attached to a vehicle body. The opening and closing device has a base bracket, a motor, a transmission, a rotary drum, a first conduit fixed portion, a second conduit fixed portion, a first tension controller and a second tension controller. The base bracket is fixed to the vehicle body with bolts. The motor, the transmission, the rotary drum, the first and second conduit fixed portions and the first and second tension controllers are fixed to a disposition face of the base bracket. The first and second tension controllers are respectively disposed between the rotary drum and the first conduit fixed portion and between the rotary drum and the second conduit fixed portion, and applies tension to the cable fed from the rotary drum to take up the slack.
Abstract:
A horizontally sliding door or some other type of translating door includes a chain, cable, or some other elongate member for moving a door panel across a doorway, and the door also includes a sensor that monitors the tension or slackness of the elongate member to determine whether the door panel encounters an obstruction in the doorway. In some embodiments, a proximity sensor detects slackness in the elongate member by sensing when the member droops away from or toward the sensor. The elongate member can have some sections that are more elastic than others to increase the drooping action.
Abstract:
An opening-and-closing device opens and closes a sliding door by using a cable connected to the sliding door movably attached to a vehicle body. The opening-and-closing device has a base bracket, a motor, a transmission, a rotary drum, a first conduit fixed portion, a second conduit fixed portion, a first tension controller and a second tension controller. The base bracket is fixed to the vehicle body with bolts. The motor, the transmission, the rotary drum, the first and second conduit fixed portions and the first and second tension controllers are fixed to a disposition face of the base bracket. The first and second tension controllers are respectively disposed between the rotary drum and the first conduit fixed portion and between the rotary drum and the second conduit fixed portion, and applies tension to the cable fed from the rotary drum to take up the slack.
Abstract:
A window lifter comprises a cable, a window linkage driven by the cable, a fixed device and a cable redirecting device. The cable redirecting device is rotatably mounted on the fixed device and adapted to automatically lock onto the fixed device upon reaching a predetermined angular position. In addition, the cable redirecting device has a cable guiding portion which is not a figure of revolution about the axis of rotation relative to the fixed device. This window lifting mechanism provides a simple structure with few elements. Its assembly is also simple: the cable-redirecting device is rotatably mounted on the fixed device; it is thereafter rotated for tensioning the cable and then locked in a position where the cable is tensioned.
Abstract:
The window lifter of the invention comprises a window slider, a cable driving said window slider, a spring having a mobile cable tensioning portion and having a fixed cable return portion, both portions engaging the cable. This window lifter provides a simplified fabrication and a reduced number of parts.