Abstract:
Methods and apparatus for high efficiency generation of electricity and low oxides of nitrogen (NO.sub.x) emissions are provided. The electricity is generated from combustion of hydrogen-rich gases produced in waste conversion units using ultra lean fuel to air ratios in the range of 0.4-0.7 relative to stoichiometric operation in internal combustion engine-generators or ultra lean operation in gas turbines to ensure minimal production of pollutants such as NO.sub.x. The ultra lean operation also increases the efficiency of the internal combustion engine. High compression ratios (r=12 to 15) can also be employed to further increase the efficiency of the internal combustion engine. Supplemental fuel, such as natural gas or diesel oil, may be added directly to the internal combustion engine-generator or gas turbine for combustion with the hydrogen-rich gases produced in waste conversion unit. In addition, supplemental fuel may be reformed into a hydrogen-rich gas in a plasma fuel converter and then introduced into the internal combustion engine-generator or a gas turbine for combustion along with supplemental fuel and the hydrogen-rich gases produced in waste conversion unit. The preferred embodiment of the waste conversion unit is a fully integrated tunable arc plasma-joule heated melter with a common molten pool and power supply circuits which can be operated simultaneously without detrimental interaction with one another. In this embodiment, the joule heated melter is capable of maintaining the material in a molten state with sufficient electrical conductivity to allow rapid restart of a transferred arc plasma.
Abstract:
A waste disposal device having a wall structure defining an incineration space, a torch assembly separate from the wall structure, and first structure cooperating between the torch assembly and wall structure for maintaining the torch assembly in an operative position on the wall structure. The torch assembly has a torch for generating heat in the incineration space with the torch assembly in the operative position. The torch assembly further has second structure for circulating a cooling liquid in heat exchange relationship with the torch assembly, independently of the wall structure, to thereby effect cooling of the torch assembly. In one form, the torch assembly is removably maintained in the operative position on the wall structure.
Abstract:
An apparatus having a thermal scission reactor with a graphite-lined plasma arc chamber for the pyrolytic disposal of toxic or hazardous waste. The thermal scission reactor includes a vessel with the plasma arc chamber surrounded by a water jacket. A tubular plasma arc electrode is provided for reciprocating movement within the plasma arc chamber. A conduit communicates with the tubular plasma arc electrode for the introduction of waste material through the tubular plasma arc electrode into the plasma arc chamber. The tubular plasma arc and an opposing electrode produce a plasma electric arc within the plasma arc chamber. An entry duct communicates with the plasma arc chamber for introduction of solid waste into the plasma arc chamber. An exit duct communicates with the plasma arc chamber for escape of gases and ash from the plasma arc chamber. Graphite liners are provided in the plasma arc chamber, the entry duct and the exit duct. The graphite liners may be impregnated with substances for neutralizing the waste material being processed. Injection ports for introduction of neutralizing agents, water, oxygen or hydrogen into the plasma arc chamber may be provided.
Abstract:
Harmful constituents are removed from solid hazardous waste material by heating the waste in the presence of a continuous flow of oxygen until the waste material becomes an agitated molten aggregate and generates effluvia. The effluvia is conducted through a high temperature zone to destroy organic and other harmful constituents. The effluvia is further processed to achieve acceptable environmental quality. The effluvia processing includes a dual reburn/heat exchanger compartment. The generated molten aggregate is thoroughly mixed and hardens into a ceramic-like aggregate which is environmentally safe.
Abstract:
An improved method and plasma torch incinerator or reactor in which the incinerator uses a rotating, materials-receiving drum or chamber for receiving the hot plasma of a plasma torch. By properly constructing the inner surface of the rotatable drum and by varying the speed of rotation of the drum, waste materials can be effectively spread out over the inner surface of the drum to form a relatively thin layer of waste materials which has a large surface area which can be more quickly heated to the desired high temperature provided by the plasma torch. Moreover, the spreading out of the waste materials can cause them to be recirculated and mixed by periodically reducing the speed of rotation of the drum. The plasma of the plasma torch is not directed toward a stationary part of the drum. Instead, the plasma torch is directed at a rotatable portion of the drum which provides for a better heat distribution and permits portions of the drum to cool during the intervals when they are not in direct contact with the plasma. Thus, liquid as well as solid waste materials can be fed together into the rotating drum.
Abstract:
Coherent radiation is used to provide the energy, excite and sustain of plasma in which solid waste materials are reduced to a slag-like material from which has been removed the more harmful constituents. The effluvia of the plasma reduction process is scrubbed to remove particulates and the gas is processed by additional heating to eliminate products of incomplete combustion and/or chemically convert harmful constituents. The remaining gas is then safely exhausted into the atmosphere. The solid waste material may be the ash by-product of prior incineration.
Abstract:
A method and system for detoxification of waste materials, comprising incineration of the waste materials followed by additional contaminant reduction steps. The waste material is separated into solid and liquid portions that are fed separately into a combustion chamber wherein they are exposed to a plasma arc torch to affect combustion, producing a gaseous emissions stream and an obsidian residue. The gaseous emissions stream passes through an emissions control unit to eliminate acid gases, metals, and particulates, producing a cleansed exhaust gas and an emissions residue. The emissions residue is passed through an electroplating unit to reclaim metals. The obsidian residue is pulverized and then treated by a chemical process, or passed through the electroplating unit, to reduce the concentration of unbound barium contained therein, producing an inert obsidian residue that is free of toxic levels of all contaminants.
Abstract:
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
Abstract:
A method and apparatus for pyrolytically decomposing waste material characterized by injecting a mixture of waste and water into a plasma torch having an operation temperature of in excess of 5000.degree. C. to form a mixture of product gases and solid particulate; separating the gases and particulate in a first cyclone separator into separate phases; transferring the particulate to a second cyclone separator and subjecting the particulate to a partial vacuum to separate any carryover gases from the particulate; subjecting the combined reaction chamber and carry over gases in a scrubber to a spray consisting of a caustic solution and water to eliminate any carryover particulate from the gases and to neutralize and HCl in the gases; and removing the gases from the scrubber.
Abstract:
The present invention relates to a method of destroying waste to form a leach-proof slag and a gas containing only H.sub.2 and CO as combustible constituents. The method comprises the steps of: (a) supplying waste material at the top of a shaft furnace while simultaneously supplying energy in the form of hot oxidizing gas at the bottom of the shaft furnace, (b) discharging liquid slag from the bottom of the furnace shaft and withdrawing the gas generated, at the top of the furnace shaft, and (c) supplying the gas generated, to a subsequent reaction chamber while simultaneously supplying energy in the form of a hot gas.